

Welcome to Hubster’s Documentation Portal

[image: _images/logo.png]
Hubster is an open-ended Unified Message Platform as a Service (PaaS) and like all good platforms, we try our best to adhere to industry standards and best practices.

So, what is meant by an Open-ended platform? An open-end platform allows a business to extend the platform by enabling the business to bring in their own integration or plugins.

At Hubster, we provide following ways on how you can extend our platform:

Integration (BYOI):

If you have an integration that Hubster does not currently support or it is unique to your business, you can easily add it to the mix using our direct API. There are no limits on how many customer, agent, bot, or CRM integrations you can add.

Pipeline plugins (BYOP)

Businesses can control the message pipeline by injecting their custom plugins. You can enrich messages, alter, or even control the follow how messages are redirected to any given participant involved in the conversation.

Webhooks

Businesses can add their own webhooks and will only be triggered based on filter rules. This is a great way to monitor certain activities that are important to the business. It should be noted that standard Webhooks are based on a one-way communication protocol know as fire-and-forget.

Dynamic Commands

Dynamic commands are a powerful concept allowing agents and/or bots through simple text, instruct Hubster to invoke your backend service to formulate the appropriate response. For example, if your business provides a command to a list a line of clothing specific to the user’s profile, your system can check to see what are the best options and construct a targeted response that is meaningful to the end user.

Our APIs are designed using REST principles and most of our payloads are structured using JSON. Any exception to this rule will be noted where necessary.

Note

Hubster APIs incorporate cross-origin resource sharing (CORS) whereby facilitating web applications to freely use our API in an authenticated and secure manner.

Please help us make this experience even better

If you find any errors or a section is not as clear or lacking details, please don’t hesitate to contact us at support@hubster.io

The Big Picture

High Level Architecture

Hubster’s open-ended platform was designed for simplicity, yet power enough to allow a business to extend the platform
to meet their specific needs, on a per hub basis. Being open-end provides a business the flexibility to
enrich the messaging pipeline by injecting their own custom integrations and plugins.

Engine

[image: ../_images/arch_full.png]
Hubster’s Engine workflow and feature annotation:

	A customer channel initiates a conversation with the engine

	The engine reads the channel’s hub configuration and starts the pipeline workflow

	The pipeline reverse engineers the channel’s proprietary format and constructs a common Hubster format known as an activity

	Based on the hub’s configuration and channel source type, the pipeline determines the appropriate preliminary flow actions required

	The pipeline then determines the appropriate auxiliary flow actions required

	Once both preliminary and auxiliary flows have been executed, the pipeline then determines the active business destination
and reverse engineers the activity to the proprietary format specific to the destination source – agent or bot

	The agent may initiate a takeover from a bot, handles the request, and eventually hands the conversation back to the bot.
Conversely, if the bot has difficulty handling a request, the bot can initiate a handover and redirect the conversation to the agent.

The Hub Anatomy

At Hubster, a hub (hence our company name), is the center where all configurations are managed and stored.
Hubs are used by engine’s pipeline which drives the workflows and what actions are taken.
A business can create as many hubs needed, with each having a specific configuration for a given business segment.
For example, a business can create hubs for various lines-of-businesses, campaigns, events, and more.

[image: ../_images/hub.png]
TODO: Hub Integration with image

Customer Channels

TODO

Business Channels

TODO

	Agents

	Bots

	Handover rules

CRM Channels

TODO

Webhooks

TODO

Commands

TODO

Preliminaries

TODO

Pipeline

TODO

Bring your own Integration (BYOI)

TODO

UX Multi-rendering/Response Framework

TODO

Terminology

Source

TODO

Integrations

TODO

Support

TODO

Webchat Component

This section will describe how to embed and configure the Hubster Webchat component
onto your website. Different configuration examples will be provided and a detail
explanation describing each configuration property available.

Adding to Website

When working with Hubster’s Webchat component, you must first embed the component onto every webpage
where web-chatting is desired on your website.

Below is a snippet of the default configuration to enable web-chatting on your webpage.
It should be noted that it’s best to add the webchat component at the very tail end of
the HTML webpage.

<!DOCTYPE html>
<html lang="en">
<head>
 ...
</head>
<body>
 ...

 <!-- Webchat script -->
 <hubster-webchat></hubster-webchat>
 <script>
 window.HUBSTER_CONFIG = {
 // remove these lines when deploying to production
 engineEndpoint: 'https://demo-engine.hubster.io',
 eventsEndpoint: 'https://demo-events.hubster.io',
 integrationId: 'B205B3EC-A9D7-4243-B88C-017533957DBE',
 sessionTTL: 43200
 };
 </script>
 <script src="https://hubsterdevcdn.azureedge.net/pub/scripts/webchat/hubster-webchat-1.0.min.js"></script>
</body>
</html>

By default, the webchat component will look like this:

[image: ../_images/default_chat.png]
Configuring the look-and-feel

Although, Hubster loves the default look, we realize our customers need the ability to change how
the webchat component looks-and-feels on their website. A lot of consideration and flexible has been provided,
giving customers a wide range of style settings to configure their webchat component.

Below is an example configuration on how one would style the component using a blue theme.

<!DOCTYPE html>
<html lang="en">
<head>
 ...
</head>
<body>
 ...

 <!-- Webchat script -->
 <hubster-webchat></hubster-webchat>
 <script>
 window.HUBSTER_CONFIG = {
 // remove these lines when deploying to production
 engineEndpoint: 'https://demo-engine.hubster.io',
 eventsEndpoint: 'https://demo-events.hubster.io',
 integrationId: 'B205B3EC-A9D7-4243-B88C-017533957DBE',
 sessionTTL: 43200,
 styling: false,
 styles: {
 header: {
 title: 'My Company Title',
 iconUrl: 'https://hubsterdevcdn.azureedge.net/pub/demo/webchat/rcm/chat_logo.png',
 style: {
 'backgroundColor': '#004F99'
 }
 },
 mount: {
 style: {
 'backgroundColor': '#004F99',
 'bottom': '5rem',
 'right': '.9rem',
 'z-index': '100'
 },
 },
 userTextMessage: {
 'backgroundColor': '#3566BF'
 },
 agentTextMessage: {
 'color': '#22186e',
 'backgroundColor': '#ECECEC'
 },
 botTextMessage: {
 'color': '#22186e',
 'backgroundColor': '#ECECEC'
 },
 footer: {
 maxInputHeight: '40px'
 }
 },
 onMount(mounted) {
 console.log('Mounted:' + mounted);
 },
 mountOnLoad() {
 return -1;
 },
 onReceivedActivity(activity) {
 console.log(activity);
 },
 onConversation() {
 return {
 "bindingKey": "some_unique_userId",
 "properties": {
 "profile": {
 "full name": "SomeUserName",
 "gender": "female",
 "custom1": "value1",
 "custom2": "value2",
 ...
 },
 "additional": {
 "custom1": "value1",
 "custom2": "value2",
 ...
 }
 }
 };
 }
 };
 </script>
 <script src="https://hubsterdevcdn.azureedge.net/pub/scripts/webchat/hubster-webchat-1.0.min.js"></script>
</body>
</html>

The above configuration yields the following theme.

[image: ../_images/blue_sample_chat.png]

Note

Before going live, it’s best to style the webchat component first to suite your site’s look-and-feel.
This however, can be a time consuming task, but luckily Hubster makes this easy.

Hubster provides configuration property called styling (see the example above).
By default, this property is set to false. However, by setting this property to true, Hubster will
provide a list of all the available webchat widgets for you to style. Most widgets share the same styling property,
meaning that, if you change one style, it may affect one or more other widgets.

Hubster provides a wide range of styles that can be change, however, try to avoid changing styles that may affect
sizes and position as we may not guarantee the visual behavior.

Furthermore, when styling is set to true, the webchat component disables all backend communications
with Hubster services.

Configuration

	Property

	Mandatory

	Comments

	engineEndpoint

	No

	
When developing in demo mode, set this value to

https://demo-engine.hubster.io

The default is: https://engine.hubster.io (production)

	eventsEndpoint

	No

	
When developing in demo mode, set this value to:

https://demo-events.hubster.io

The default is: https://events.hubster.io (production)

	sessionTTL

	No

	How long the user’s conversation should last in mins. The user’s conversion is
maintain even after they close their browser. If the user does not visit the
site after the sessionTLL has expired, a new conversation will be established.
Sessions are based on a rolling window, meaning that the session’s start time
will reset if the user revisits the site prior to the session expiring.
The default is 1440 (1 day).

	integrationId

	Yes

	The integration id for this Webchat integration.

	openOnNewMessage

	No

	This tells the webchat component when closed, to open the chat window if
a new message immediately arrives. The default is false.

	hideCloseIcon

	No

	Don’t show the header’s close Icon. The default is false.
Note: If the hideCloseIcon property is set to true, then there is no way to close the
webchat window.

	fullWindow

	No

	If set to to true, the webchat window will open in full window mode.

	styling

	No

	Set this value to true when styling the webchat component. The webchat
will provide a list of all the available webchat widgets for you to style. The default is false.

	styles

	No

	A collection of styles. See the Styles Configuration section.

	mountOnLoad

	No

	A JavaScript method that will be invoked when the webchat component
is first loaded on the host webpage. This method when provided, allows
the developer to determine how long of a delay (in milliseconds) the
webchat component should wait before mounting (open).

On page reload

– a return value < 0 indicates no mounting should occur

– a return value >= 0 indicates mount after number of milliseconds

mountOnLoad(): number;

	onMount

	No

	A JavaScript method that will be invoked when the webchat component
has been mounted (open) or docked (closed).

onMount(mounted: boolean): void;

	onReceivedActivity

	No

	A JavaScript method that will be invoked when the webchat component
receives an activity from the Hubster Engine service before it’s displayed
on the webchat list.

onReceivedActivity(activity: Activity): void;

	onBeforeActivitySend

	No

	A JavaScript method that will be invoked when the webchat component is
about to send a user activity to Hubster’s Engine service. The programer
has the option to inspect the activity and perform any action as deemed
necessary.

Return true to allow the user activity to be sent, otherwise false to ignore it.

onBeforeActivitySend(activity: Activity): boolean;

Note

Typically this event is used when the user presses a postback button event.
The payload of the postback may contain a special action that programer can then inspect and preform a
local action on the browser.

	onConversation

	No

	A JavaScript method that will be invoked when the webchat component
is about to establish a conversation. The developer has the option to
provide a unique binding key (typically a user id) and other properties,
such as the user’s name, etc.

onConversation(): EstablishConversation;

{
 "bindingKey": "some_unique_userId",
 "properties": {
 "profile": {
 "full name": "SomeUserName",
 "gender": "female",
 "prop1": "value1",
 "prop2": "value2"
 },
 "additional": {
 "prop1": "value1",
 "prop2": "value2"
 }
 }
}

Note

Typically this method is used if the web app hosting the webchat component, knows some thing about the logged user. The web app can provide a unique value for the bindingKey, typically the user Id and at minimum, provide the user’s name in the properties.profile.”full name” property.

Styles Configuration

Hubster wanted to provide an easy, consistent and standard way styling your webchat component.
Hubster decided to adhered to the HTML style property format as shown below.

<div styles='color: red; background-color: yellow'>...</div>

The only stipulation is that any style property that is normally hyphenated, will be replace with
its camelCase equivalent:

	text-decoration will be represented as ‘textDecoration’

	z-index will be represented as ‘zIndex’

	background-color will be represented as ‘backgroundColor’

	color will be represented as ‘color’ (in this example, the property name remains the same)

	and so on…

See a more formal example below.

window.HUBSTER_CONFIG = {
 styles: {
 mount: {
 iconUrl: 'https://cdn.com/logo.png',
 style: {
 'backgroundColor': '#004F99',
 'bottom': '5rem',
 'right': '.9rem',
 'zIndex': '100'
 },
 },
 userTextMessage: {
 'backgroundColor': '#3566BF'
 },
 },
 ...
};

Note

Values for each style property must be incased in single ‘quotes’.
This is true even for properties that accept numeric values.
If values are not provided, the webchat component will assume its defaults.

	Style

	Comments

	chatBackgroundColor

	This style controls the background color for the webchat list view. Examples: ‘#ABDCEF’ or ‘red’ …

	userTextMessage

	
This style controls the user text message bubble. See example below:

window.HUBSTER_CONFIG = {
 styles: {
 userTextMessage: {
 'color': 'green'
 'backgroundColor': '#CFCFCF'
 },
 },
 ...
};

	agentTextMessage

	
This style controls the agent text message bubble. See example below:

window.HUBSTER_CONFIG = {
 styles: {
 agentTextMessage: {
 'color': 'blue'
 'backgroundColor': 'white'
 },
 },
 ...
};

	botTextMessage

	
This style controls the bot text message bubble. See example below:

window.HUBSTER_CONFIG = {
 styles: {
 botTextMessage: {
 'color': 'yellow'
 'backgroundColor': '#00FF00'
 },
 },
 ...
};

	header

	
This style controls the header of the webchat component. See example below:

window.HUBSTER_CONFIG = {
 styles: {
 header: {
 title: 'My Company Title',
 iconUrl: 'https://cdn.com/logo.png',
 style: {
 'color': 'white'
 'backgroundColor': 'blue'
 }
 }
 },
 ...
};

	footer

	
This style controls the footer of the webchat component. See example below:

window.HUBSTER_CONFIG = {
 styles: {
 footer: {
 maxInputHeight: '40px',
 placeholderText: 'My text input placeholder...'
 }
 },
 ...
};

	mount

	
This style controls the mount of the webchat component. See example below:

window.HUBSTER_CONFIG = {
 styles: {
 mount: {
 iconUrl: 'https://cdn.com/logo.png',
 style: {
 'backgroundColor': '#004F99',
 'bottom': '5rem',
 'right': '.9rem',
 'z-index': '100'
 }
 }
 },
 ...
};

	buttons

	Hubster supports the following Postback buttons.

[image: ../_images/postback_buttons.png]

To change the look-and-feel, see the following configuration.

window.HUBSTER_CONFIG = {
 styles: {
 buttons: {
 primary: {
 'color': '#004F99',
 'backgroundColor': '#004F99',
 'borderColor': 'black'
 },
 primaryHover: {
 'color': 'white',
 'backgroundColor': 'green',
 'borderColor': 'yellow'
 },
 info: {
 'color': '#004F99',
 'backgroundColor': '#004F99',
 'borderColor': 'black'
 },
 infoHover: {
 'color': 'white',
 'backgroundColor': 'green',
 'borderColor': 'yellow'
 },
 // see above properties for examples
 secondary: { ... },
 secondaryHover: { ... },
 success: { ... },
 successHover: { ... },
 warning: { ... },
 warningHover: { ... },
 danger: { ... },
 dangerHover: { ... },
 }
 },
 ...
};

	quickReplies

	Hubster supports the following Quick Reply buttons.

[image: ...]

To change the look-and-feel, see the following configuration.

window.HUBSTER_CONFIG = {
 styles: {
 quickReplies: {
 primary: {
 'color': '#004F99',
 'backgroundColor': '#004F99',
 'borderColor': 'black'
 },
 primaryHover: {
 'color': 'white',
 'backgroundColor': 'green',
 'borderColor': 'yellow'
 },
 info: {
 'color': '#004F99',
 'backgroundColor': '#004F99',
 'borderColor': 'black'
 },
 infoHover: {
 'color': 'white',
 'backgroundColor': 'green',
 'borderColor': 'yellow'
 },
 // see above properties for examples
 secondary: { ... },
 secondaryHover: { ... },
 success: { ... },
 successHover: { ... },
 warning: { ... },
 warningHover: { ... },
 danger: { ... },
 dangerHover: { ... },
 }
 },
 ...
};

	links

	Hubster supports the following Link buttons.

[image: ../_images/link_buttons.png]

To change the look-and-feel, see the following configuration.

window.HUBSTER_CONFIG = {
 styles: {
 links: {
 primary: {
 'color': '#004F99',
 'backgroundColor': '#004F99',
 'borderColor': 'black',
 'textDecoration': 'none'
 },
 primaryHover: {
 'color': 'white',
 'backgroundColor': 'green',
 'borderColor': 'yellow',
 'textDecoration': 'underline'
 },
 info: {
 'color': '#004F99',
 'backgroundColor': '#004F99',
 'borderColor': 'black',
 'textDecoration': 'none'
 },
 infoHover: {
 'color': 'white',
 'backgroundColor': 'green',
 'borderColor': 'yellow'
 'textDecoration': 'underline'
 },
 // see above properties for examples
 secondary: { ... },
 secondaryHover: { ... },
 success: { ... },
 successHover: { ... },
 warning: { ... },
 warningHover: { ... },
 danger: { ... },
 dangerHover: { ... },
 }
 },
 ...
};

	listItemButtons

	Hubster supports the following List Item buttons. See buttons outlined in red.

[image: ../_images/list_item_buttons.png]

To change the look-and-feel, see the following configuration.

window.HUBSTER_CONFIG = {
 styles: {
 listItemButtons: {
 primary: {
 'color': '#004F99',
 'backgroundColor': '#004F99',
 'borderColor': 'black',
 'textDecoration': 'none'
 },
 primaryHover: {
 'color': 'white',
 'backgroundColor': 'green',
 'borderColor': 'yellow',
 'textDecoration': 'underline'
 },
 info: {
 'color': '#004F99',
 'backgroundColor': '#004F99',
 'borderColor': 'black',
 'textDecoration': 'none'
 },
 infoHover: {
 'color': 'white',
 'backgroundColor': 'green',
 'borderColor': 'yellow'
 'textDecoration': 'underline'
 },
 // see above properties for examples
 secondary: { ... },
 secondaryHover: { ... },
 success: { ... },
 successHover: { ... },
 warning: { ... },
 warningHover: { ... },
 danger: { ... },
 dangerHover: { ... },
 }
 },
 ...
};

	listButtons

	Hubster supports the following List buttons. See buttons outlined in red.

[image: ../_images/list_buttons.png]

To change the look-and-feel, see the following configuration.

window.HUBSTER_CONFIG = {
 styles: {
 listButtons: {
 primary: {
 'color': '#004F99',
 'backgroundColor': '#004F99',
 'borderColor': 'black',
 'textDecoration': 'none'
 },
 primaryHover: {
 'color': 'white',
 'backgroundColor': 'green',
 'borderColor': 'yellow',
 'textDecoration': 'underline'
 },
 info: {
 'color': '#004F99',
 'backgroundColor': '#004F99',
 'borderColor': 'black',
 'textDecoration': 'none'
 },
 infoHover: {
 'color': 'white',
 'backgroundColor': 'green',
 'borderColor': 'yellow'
 'textDecoration': 'underline'
 },
 // see above properties for examples
 secondary: { ... },
 secondaryHover: { ... },
 success: { ... },
 successHover: { ... },
 warning: { ... },
 warningHover: { ... },
 danger: { ... },
 dangerHover: { ... },
 }
 },
 ...
};

Webchat Script Versions

	Version

	Reference

	1.0

	https://hubsterdevcdn.azureedge.net/pub/scripts/webchat/hubster-webchat-1.0.min.js

Webhooks

This section describes the necessary steps and considerations when developing a webhook integration. An example is
provided, detailing how to implement your webhook endpoint to trust incoming payloads sent by Hubster.

Webhooks are only supported by the following integration types:

	System

	Direct

	BYOI (Bring your own Integration)

Warning

For Direct and BYOI integration types, they have the option to either receive
activities via webhooks or websockets. If an integration has been configured using websockets and
its endpoint is unreachable, Hubster will not enforce it’s retry policy as websockets
adhere to fire-and-forget paradigm.

Furthermore, if an integration is configured for websockets, then this section is not applicable.
Websockets are secured through an authenticated connection thus HMAC verification is redundant and unnecessary.

HMAC Signature Validation

If your custom integration was configured to receive activities via webhooks, it’s important to
ensure that the request your integration receives comes from a trusted source, in this case Hubster.

Hubster uses the HMAC [https://en.wikipedia.org/wiki/HMAC/] when signing and verify signatures.
When you create and configured your custom integration for a given hub,
the results of the request will yield two properties - publicSigningKey and privateSigningKey respectively.

To obtain your customer integration’s public/private key pair, just call the following API:

GET /api/v1/integrations/{integrationId}

{
 "integrationTypeId": "System",
 "channelId": "System",
 "name": "My cool integration name.",
 "configuration": {
 "events": [
 "message"
],
 "webhookUrl": "https://url_end_point.com",
 "publicSigningKey": "3EF951F619CD4F5E820C73622C0F1A3C",
 "privateSigningKey": "FA96D15568654A4482772E00BA941BCB"
 }
}

The publicSigningKey is not used by Hubster when signing the request. However, the business can use
the publicSigningKey as a reference key to obtain their privateSigningKey from where they manage their secrets.

Warning

Please make sure all private keys are stored securely.
If you suspect your private key was compromised, you can regenerate new public/private key pair by
updating your custom integration. Click here for more info.

C# Sample

Below is an example code snippet using C# ASP.NET Core. This sample validates that
the request is trusted using HMAC, and once trusted, consumes the activities.
The code is fairly straight forward and should be easily transferable to other programing languages.

The main steps are as follows:

	Extract the Signature from the request header

	Extract the Public Key from the request header

	Obtain the Private Key from your secure keystore and convert it to a UTF8 byte array

	Obtain the raw request body in byte array form

	Produce the a HMAC hash (signature) by using the raw request body and applying the Private Key

	Take the signature array produced from the step above and convert to 64 base encoding

	Compare if signatures match

	If signatures match then consume the activities as needed

	If signatures don’t match then return Forbidden (403)

This sample is based off APS.NET Core, using C#. To see the full example,
head over to Hubster’s public sample [https://github.com/hubsterio/samples] repo.

[ApiController]
[Route("[controller]")]
public class WebhooksController : ControllerBase
{
 [HttpPost("activities")]
 public async Task<IActionResult> ReceiveActivities()
 {
 var publicKey = Request.Headers["x-hubster-public-key"].ToString();
 var headerSignature = Request.Headers["x-hubster-signature"].ToString();

 if (string.IsNullOrWhiteSpace(publicKey)
 || string.IsNullOrWhiteSpace(headerSignature))
 {
 return StatusCode((int)HttpStatusCode.Forbidden, "Forbidden");
 }

 var privateKey = await GetPrivateKeyAsync(publicKey);

 var rawBody = new byte[(int)Request.ContentLength];
 await Request.BodyReader.AsStream().ReadAsync(rawBody);

 // now preform HMAC signature check

 using (var hasher = new HMACSHA256(privateKey))
 {
 var byteSignature = hasher.ComputeHash(rawBody);
 var signature = Convert.ToBase64String(byteSignature);

 if (signature != headerSignature)
 {
 _logger.LogWarning("Invalid signature");
 return StatusCode((int)HttpStatusCode.Forbidden, "Forbidden");
 }
 }

 // at this point the request is now trusted
 // and it came from Hubster

 var json = Encoding.UTF8.GetString(rawBody);
 var activityConverter = new DirectMessageJsonConverter();
 var activities = JsonConvert.DeserializeObject<SystemOutboundDataModel>(json, activityConverter);

 // you now have a list of activities you can process, etc.

 return Ok();
 }

 private Task<byte[]> GetPrivateKeyAsync(string publicKey)
 {
 // NOTE: for sake of sample, we are hard-coding the private key
 // however, you should use the public key as an indexer to get
 // the private key in some secure store like KeyVault, etc.

 var privateKey = "FA96D15568654A4482772E00BA941BCB";
 var bPrivateKey = Encoding.UTF8.GetBytes(privateKey);

 return Task.FromResult(bPrivateKey);
 }
}

Note

If you’re using .NET Core, the following nuget package contains all the activity model definitions.

Hubster.Abstractions [https://www.nuget.org/packages/Hubster.Abstractions/1.0.2]

Install-Package Hubster.Abstractions -Version 1.0.2

To see a list of activity models, see our public
github [https://github.com/hubsterio/Hubster.Abstractions/tree/develop/Hubster.Abstractions/Models/Direct]
for direct reference.

Webhook - Header

	Key

	Value

	x-source-system

	The sending system source. This value will always be engine.hubster.io

	x-hub-id

	The hub that that triggered integration belongs too.

	x-integration-id

	The integration that was triggered.

	x-conversation-id

	The conversation that this activity was enacted on.

	x-hubster-public-key

	The public key for this integration. The endpoint can use this value to determine the
private key used to sign the payload.

	x-hubster-signature

	The HMAC signature of the payload.

System - Payload

Webhook endpoints will receive a payload that looks similar to the JSON snippet shown below.
The root node contains the conversation details and the activities node contains
one or more activities.

{
 "hubId": "00000000-0000-0000-0000-000000000001",
 "tenantId": "00000000-0000-0000-0000-000000000002",
 "integrationId": "00000000-0000-0000-0000-000000000003",
 "conversationId": "00000000-0000-0000-0000-000000000004",
 "conversationProperties": {
 "profile": {
 "device": "Direct",
 "full name": "Some customer name",
 "prop1": "value1",
 "prop2": "value2"
 },
 "additional": {
 "prop1": "value1",
 "prop2": "value2"
 }
 },
 "activities": [
 {
 "type": "message",
 "eventTrigger": "message:customer",
 "eventId": 1603933721542,
 "externalId": "my-external-id",
 "isEcho": false,
 "interactionId": "00000000-0000-0000-0000-000000000005",
 "flowProcess": "Default",
 "sender": {
 "integrationId": "00000000-0000-0000-0000-000000000001",
 "integrationType": "Customer",
 "channelType": "Direct",
 "tokenId": "t+8qymYD1jp7wDSHG+3eUA=="
 },
 "recipient": {
 "integrationId": "00000000-0000-0000-0000-000000000006",
 "integrationType": "Agent",
 "channelType": "Direct",
 "tokenId": "971480cb-938c-4dfd-be4e-01756c833490.00000000-0000-0000-0000-000000000003"
 },
 "message": {
 "type": "text",
 "text": "Hi there!"
 }
 }
]
}

Direct - Payload

The Direct outbound payload is similar to the Webhook outbound payload accept that, rather than
having a collection of activities, the activities will be replaced with an activity node.

{
 "hubId": "00000000-0000-0000-0000-000000000001",
 "tenantId": "00000000-0000-0000-0000-000000000002",
 "integrationId": "00000000-0000-0000-0000-000000000003",
 "conversationId": "00000000-0000-0000-0000-000000000004",
 "conversationProperties": {
 "profile": {
 "device": "Direct",
 "full name": "Some customer name",
 "prop1": "value1",
 "prop2": "value2"
 },
 "additional": {
 "prop1": "value1",
 "prop2": "value2"
 }
 },
 "activity": {
 "type": "message",
 "eventTrigger": "message:customer",
 "eventId": 1603933721542,
 "externalId": "my-external-id",
 "isEcho": false,
 "interactionId": "00000000-0000-0000-0000-000000000005",
 "flowProcess": "Default",
 "sender": {
 "integrationId": "00000000-0000-0000-0000-000000000001",
 "integrationType": "Customer",
 "channelType": "Direct",
 "tokenId": "t+8qymYD1jp7wDSHG+3eUA=="
 },
 "recipient": {
 "integrationId": "00000000-0000-0000-0000-000000000006",
 "integrationType": "Agent",
 "channelType": "Direct",
 "tokenId": "971480cb-938c-4dfd-be4e-01756c833490.00000000-0000-0000-0000-000000000003"
 },
 "message": {
 "type": "text",
 "text": "Hi there!"
 }
 }
}

Activity Event Filters

Below are list of of activity events that system integrations can register too.
System integrations must register to at least one event but can register to more as deemed necessary.
Hubster will only send events once, to one of the following events if triggered.

	Event

	Description

	message

	Hubster will notify the webhook on all message activities for the given hub.

	message:customer

	Hubster will only notify the webhook on all customer message activities for the given hub.

	message:agent

	Hubster will only notify the webhook on all agent message activities for the given hub.

	message:bot

	Hubster will only notify the webhook on all bot message activities for the given hub.

Webhook Retry Policy

	Retry Attempt

	Next Retry Period

	Timeout Before Retry

	0 x 2 minutes

	0 minutes (immediate)

	10 seconds

	1 x 2 minutes

	2 minutes

	10 seconds

	2 x 2 minutes

	4 minutes

	10 seconds

	3 x 2 minutes

	6 minutes

	10 seconds

	4 x 2 minutes

	8 minutes

	10 seconds

	5 x 2 minutes

	10 minutes

	10 seconds

Warning

Once all retries attempts are exhausted, Hubster will send a notification to the tenant account holder
with details to as to why the endpoint failed. It is up to the the account holder to rectify
their integration issue.

Direct Integrations

TODO

Overview

This section will provide guidance and usage on how to interact with Hubster’s APIs. The goal of Hubster is to provide a consistent and systematic approach across all our API resources, in terms of style, format and responses.

Hubster’s APIs are designed using REST principles and most of our payloads are structured using JSON. Any exception to this rule will be noted where necessary.

Note

Hubster APIs incorporate cross-origin resource sharing (CORS) whereby facilitating web applications to
freely use our API in an authenticated and secure manner.

Environments

Below are the list of Hubster environments:

	Identity

	API Resource

	Demo

	https://demo-identity.hubster.io

	Production

	https://identity.hubster.io

	Portal

	API Resource

	Demo

	https://demo-portal-api.hubster.io

	Production

	https://portal-api.hubster.io

	Engine

	API Resource

	Demo

	https://demo-engine.hubster.io

	Production

	https://engine.hubster.io

	Events

	API Resource

	Demo

	https://demo-events.hubster.io

	Production

	https://events.hubster.io

Identity to API Resource Interaction

Below is a depiction on how a business application first obtains an access token,
using Hubster’s identity service, which can later be used to make authenticated requests against API services,
such as Hubster’s Portal, Engine and Events resources.

[image: ../_images/identity_api_resource_interactions.png]

Note

API access tokens use the client_credential grant_type, Description you can only obtain a access
tokens using client_ids and client_secrets respectively. These access tokens are longed-lived and last
no longer than 30 days. When an access token expires, accessing an API resource yields an HTTP Status 401 - Unauthorized Access.

Furthermore, access tokens are only meant for their indented API resource. For example, if a business obtains an access token for
the Portal API resource, the access token cannot be used for the to gain access to the Engine API resource, and likewise.
These design was intentional as scopes for each API resource are vastly different.
There’s an exception to this rule. Accessing the Events API requires an Engine access token.

To obtain an access_token, please refer to the Authentication API for more details.

Standard Error Response

Hubster’s standard error response model is consistent across all API resources.
The only difference being are the actual error codes returned by each API resource.

Below is an example of a Bad Request (400) returned by the Portal API.

Response

{
 "status": 400,
 "errors": [
 {
 "code": 301,
 "description": "Property 'name' is required. (code: PRT000301)"
 },
 {
 "code": 206,
 "description": "Value '50000' is not valid. (code: PRT000206)"
 }
]
}

	Property

	Description

	status

	The HTTP Status code. This will value always equals header’s HTTP Status code.

	errors

	The list of errors.

Paginated Results

In some cases, Hubster may return a paginated response whereby, the business will need to re-query the next result,
based on page number and page size. This is typically when certain GET requests may yield
a large number of records.

Below is an example from Portal API resource returning Hubs as paginated response.

Response : 200 (OK)

{
 "pageNumber": 0,
 "pageSize": 50,
 "total": 2,
 "results": [
 {
 "hubId": "00000000-0000-0000-0000-0000000000a2",
 "tenantId": "00000000-0000-0000-0000-000000000001",
 "name": "Dev Hub 1",
 "description": "Dev Hub 1 (Websocket)",
 "statusId": 2000
 },
 {
 "hubId": "00000000-0000-0000-0000-0000000000a3",
 "tenantId": "00000000-0000-0000-0000-000000000001",
 "name": "Hubster Demo (blank)",
 "description": "Hubster Demo mainly used for Videos",
 "statusId": 2000
 }
]
}

	Property

	Description

	pageNumber

	The requested page number.

	pageSize

	The requested page size.

	total

	The total number of results across all pages.
Note: the total number of items does not necessary equal the number of result items.

	results

	A list of response models returned by the API resource.
Note: the result models may differ on per call basis.

HTTP Status Codes

Hubster API HTTP Status codes.

	HTTP Status

	Description

	200

	OK response. The body of the response will include the data requested.

	201

	OK response. The response will content no data.

	400

	Bad request. The body of the response will have more info.

	401

	Unauthorized. Token is invalid.

	403

	Forbidden. Access to the requested resource is forbidden.

	404

	Not found. Resource not found.

	408

	Timed out. The request timed out.

	409

	Conflict. The request caused a conflict.

	410

	Not available. The request is not available.

	417

	Expectation Failed. The operation was aborted.

	429

	Too many requests. API usage limit has been reached.

	500

	Internal server error. There was an internal issue with the service.

	501

	Not implemented. The request is not implemented.

	503

	Service unavailable. The service is unavailable.

Identity

The Identity Service is mainly used for Authenticating client credentials and
upon success, returns a Bearer access token.

Below is the list of API collections for Hubster’s Identity service.

	Authentication

Authentication

POST /connect/token

Headers

	Header

	Description

	Content-Type

	application/x-www-form-urlencoded

Request Properties

	Property

	Mandatory

	Description

	grant_type

	Yes

	Has to be client_credentials.

	client_id

	Yes

	
The client id of the Hubster service you plan to authenticate against.

Typical, it will be one of following:

– hubster.portal.api.000000000….

– hubster.engine.api.000000000….

Please refer to Identity to API Resource Interaction for the resources accessible
on a per client_id basis.

	client_secret

	Yes

	The client secret for the client_id used.

Note

The request body is of grant_type see the following example format below:

grant_type=client_credentials&client_id=hubster.portal.api.0000000…&client_secret=SMWvD7W…

Response : 200 (OK)

{
 "access_token": "eyJhbGciOiJSUzI1NiIsImtpZCI...",
 "expires_in": 2592000,
 "token_type": "Bearer",
 "scope": "hubster-portal-api"
}

Portal

The Portal Service is mainly use to manage and configure a tenant’s
hubs, integrations and access tokens.

Below is the list of API collections for Hubster’s Portal service.

	Tenants

	Hubs

	Integrations

	Transfer Commands

	Response Commands

Tenants

Get Client

Gets a Client.

GET /api/v1/tenants/clients/{clientId}

Headers

	Header

	Description

	Authorization

	Bearer your portal access token

	Content-Type

	application/json

Url Segments

	Segment

	Description

	clientId

	The client id to get.

Response : 200 (OK)

{
 "tenantId": "B205B3EC-A9D7-4243-B88C-017533957DEB",
 "clientId": "hubster.portal.api.B205B3ECA9D74243B88C017533957DEB",
 "name": "Hubster Portal API Client (Public)",
 "enabled": true,
 "allowedScopes": [
 "hubster-portal-api"
],
 "claims": [
 {
 "type": "role",
 "value": "admin"
 },
 {
 "type": "tenant",
 "value": "B205B3EC-A9D7-4243-B88C-017533957DEB"
 }
],
 "secrets": [
 {
 "id": 9,
 "name": "my secret 1",
 "token": "SMWvD7WUAn8bkdl..."
 },
 {
 "id": 15,
 "name": "my secret 2",
 "token": "SMWvD7WUAn8bkdl..."
 },
 {
 "id": 16,
 "name": "my secret 3",
 "token": "SMWvD7WUAn8bkdl...",
 "expiration": "2030-01-31T00:00:00"
 }
]
}

	HTTP Status

	Description

	200

	OK response. The body of the response will include the data requested.

	401

	Unauthorized. Token is invalid.

	403

	Forbidden. Access to the requested resource is forbidden.

	404

	Not found. Resource not found.

	408

	Timed out. The request timed out.

	429

	Too many requests. API usage limit has been reached.

	500

	Internal server error. There was an internal issue with the service.

	503

	Service unavailable. The service is unavailable.

Add Client Token

Adds a new Client Token.

POST /api/v1/tenants/clients/{clientId}/tokens

Headers

	Header

	Description

	Authorization

	Bearer your portal access token

	Content-Type

	application/json

Url Segments

	Segment

	Description

	clientId

	The client id affected.

Request Properties

	Property

	Mandatory

	Description

	name

	Yes

	Unique tenant name for Hub.

	expiration

	No

	Expiration date when this token will no longer be valid. If no expiration date
was provide, then this token lives forever.

Example Request Body

{
 "name": "my secret 3",
 "expiration": "2030-01-31T00:00:00"
}

Response : 200 (OK)

{
 "id": 16,
 "name": "my secret 3",
 "token": "7AQNCUKAXdCg1M...",
 "expiration": "2030-01-31T00:00:00"
}

	HTTP Status

	Description

	200

	OK response. The body of the response will include the data requested.

	400

	Bad request. The body of the response will have more info.

	401

	Unauthorized. Token is invalid.

	403

	Forbidden. Access to the requested resource is forbidden.

	408

	Timed out. The request timed out.

	429

	Too many requests. API usage limit has been reached.

	500

	Internal server error. There was an internal issue with the service.

	503

	Service unavailable. The service is unavailable.

Delete Client Token

Deletes (revokes) a Client Token.

DELETE /api/v1/tenants/clients/{clientId}/tokens/{tokenId}

Headers

	Header

	Description

	Authorization

	Bearer your portal access token

	Content-Type

	application/json

Url Segments

	Segment

	Description

	clientId

	The client id affected.

	tokenId

	The the token id to delete.

Response : 200 (OK)

	HTTP Status

	Description

	200

	OK response. The body of the response will include the data requested.

	401

	Unauthorized. Token is invalid.

	403

	Forbidden. Access to the requested resource is forbidden.

	408

	Timed out. The request timed out.

	429

	Too many requests. API usage limit has been reached.

	500

	Internal server error. There was an internal issue with the service.

	503

	Service unavailable. The service is unavailable.

Hubs

Create

Creates a Hub.

POST /api/v1/hubs

Headers

	Header

	Description

	Authorization

	Bearer your portal access token

	Content-Type

	application/json

Request Properties

	Property

	Mandatory

	Description

	name

	Yes

	Unique Hub name for tenant.

	description

	Yes

	Hub description.

	closeDormantConversation

	No

	
The number of days to close this conversation if dormant. If no value
was supplied or is equal to 0 (zero), the conversation will remain open.

It should be noted that conversations can be closed by the business at any time.

	statusId

	No

	
Hub status.

Valid options are:

– Active = 2000

– Paused = 2002

Default is Active = 2000, if no value supplied.

Example Request Body

{
 "name": "Your New Cool Hub Name",
 "description": "This hub is cool",
 "closeDormantConversation": 30,
 "statusId": 2000
}

Response : 200 (OK)

{
 "hubId": "3bc1e69f-c520-446f-ab2c-01751fd66a31",
 "tenantId": "abc1e69f-c888-875f-ee2c-45789fd66a00",
 "name": "Your New Cool Hub Name",
 "description": "This hub is cool",
 "closeDormantConversation": 30,
 "statusId": 2000
}

	HTTP Status

	Description

	200

	OK response. The body of the response will include the data requested.

	400

	Bad request. The body of the response will have more info.

	401

	Unauthorized. Token is invalid.

	403

	Forbidden. Access to the requested resource is forbidden.

	408

	Timed out. The request timed out.

	429

	Too many requests. API usage limit has been reached.

	500

	Internal server error. There was an internal issue with the service.

	503

	Service unavailable. The service is unavailable.

Update

Updates a Hub.

PUT /api/v1/hubs/{hubId}

Headers

	Header

	Description

	Authorization

	Bearer your portal access token

	Content-Type

	application/json

Url Segments

	Segment

	Description

	hubId

	The hub id affected.

Request Properties

	Property

	Mandatory

	Description

	name

	No

	Unique Hub name for tenant.

	description

	No

	Hub description.

	closeDormantConversation

	No

	
The number of days to close this conversation if dormant. If no value
was supplied or is equal to 0 (zero), the conversation will remain open.

It should be noted that conversations can be closed by the business
at any time.

	statusId

	No

	
Hub status.

Valid options are:

– Active = 2000

– Paused = 2002

Default is Active = 2000, if no value supplied.

Example Request Body

{
 "name": "Your New Cool Hub Name",
 "description": "This hub is cool",
 "closeDormantConversation": 30,
 "statusId": 2000
}

Response : 200 (OK)

{
 "hubId": "3bc1e69f-c520-446f-ab2c-01751fd66a31",
 "tenantId": "abc1e69f-c888-875f-ee2c-45789fd66a00",
 "name": "Your New Cool Hub Name",
 "description": "This hub is cool",
 "closeDormantConversation": 30,
 "statusId": 2000
}

	HTTP Status

	Description

	200

	OK response. The body of the response will include the data requested.

	400

	Bad request. The body of the response will have more info.

	401

	Unauthorized. Token is invalid.

	403

	Forbidden. Access to the requested resource is forbidden.

	404

	Not found. Resource not found.

	408

	Timed out. The request timed out.

	429

	Too many requests. API usage limit has been reached.

	500

	Internal server error. There was an internal issue with the service.

	503

	Service unavailable. The service is unavailable.

Delete

Deletes a Hub.

Warning

This will delete all integrations and their registrations to their service provider.

DELETE /api/v1/hubs/{hubId}

Headers

	Header

	Description

	Authorization

	Bearer your portal access token

	Content-Type

	application/json

Url Segments

	Segment

	Description

	hubId

	The hub id affected.

Response : 200 (OK)

	HTTP Status

	Description

	200

	OK response. The body of the response will include the data requested.

	401

	Unauthorized. Token is invalid.

	403

	Forbidden. Access to the requested resource is forbidden.

	404

	Not found. Resource not found.

	408

	Timed out. The request timed out.

	429

	Too many requests. API usage limit has been reached.

	500

	Internal server error. There was an internal issue with the service.

	503

	Service unavailable. The service is unavailable.

Get

Gets a Hub.

GET /api/v1/hubs/{hubId}

Headers

	Header

	Description

	Authorization

	Bearer your portal access token

	Content-Type

	application/json

Url Segments

	Segment

	Description

	hubId

	The hub id to get.

Response : 200 (OK)

{
 "hubId": "3bc1e69f-c520-446f-ab2c-01751fd66a31",
 "tenantId": "abc1e69f-c888-875f-ee2c-45789fd66a00",
 "name": "Your New Cool Hub Name",
 "description": "This hub is cool",
 "closeDormantConversation": 30,
 "statusId": 2000
}

	HTTP Status

	Description

	200

	OK response. The body of the response will include the data requested.

	401

	Unauthorized. Token is invalid.

	403

	Forbidden. Access to the requested resource is forbidden.

	404

	Not found. Resource not found.

	408

	Timed out. The request timed out.

	429

	Too many requests. API usage limit has been reached.

	500

	Internal server error. There was an internal issue with the service.

	503

	Service unavailable. The service is unavailable.

Get Collection

Gets a list of Hubs.

GET /api/v1/hubs

Headers

	Header

	Description

	Authorization

	Bearer your portal access token

	Content-Type

	application/json

Request Arguments

	Argument

	Mandatory

	Description

	pageNumber

	No

	The requested page number. Must be >= 0

	pageSize

	No

	The requested page size. Must be >= 1 and <= 100

Response : 200 (OK)

paginated

{
 "pageNumber": 0,
 "pageSize": 50,
 "total": 2,
 "results": [
 {
 "hubId": "3bc1e69f-c520-446f-ab2c-01751fd66a31",
 "tenantId": "abc1e69f-c888-875f-ee2c-45789fd66a00",
 "name": "Your New Cool Hub Name",
 "description": "This hub is cool",
 "closeDormantConversation": 30,
 "statusId": 2000
 },
 {
 "hubId": "3bc1e69f-c520-446f-ab2c-01751fd66a32",
 "tenantId": "abc1e69f-c888-875f-ee2c-45789fd66a01",
 "name": "Your New Cool Hub Name 2",
 "description": "This hub is cool 2",
 "closeDormantConversation": 30,
 "statusId": 2000
 }
]
 }

	HTTP Status

	Description

	200

	OK response. The body of the response will include the data requested.

	400

	Bad request. The body of the response will have more info.

	401

	Unauthorized. Token is invalid.

	403

	Forbidden. Access to the requested resource is forbidden.

	408

	Timed out. The request timed out.

	429

	Too many requests. API usage limit has been reached.

	500

	Internal server error. There was an internal issue with the service.

	503

	Service unavailable. The service is unavailable.

Integrations

Create

Creates an Integration.

POST /api/v1/integrations/hubs/{hubId}

Headers

	Header

	Description

	Authorization

	Bearer your portal access token

	Content-Type

	application/json

Url Segments

	Segment

	Description

	hubId

	The hub id affected.

Request Properties

	Property

	Mandatory

	Description

	channelId

	Yes

	Has to be one of the following Channel Types.

	name

	Yes

	Unique name for integration per Hub.

	statusId

	No

	
Integration status.

Valid options are:

– Active = 3000

– Paused = 3002

Default is Active = 3000, if no value supplied.

	configuration

	Yes

	See configuration properties for each individual channelId.

Example Request Body

Note

The request body below uses TwilioSMS as an example. It should be noted that
configuration properties for each channel type differs.
Please use the correct configuration specific to the channelId value defined.

{
 "channelId": "TwilioSMS",
 "name": "My cool integration name.",
 "statusId": 3000,
 "configuration": {
 "authToken": "cb8c5367c3c4586ecb589e25570...",
 "accountSid": "AC1fc1c1722444b0c6313d3ae988b...",
 "numberSid": "PN667435536f4d1cefdf054abf99..."
 }
}

	HTTP Status

	Description

	200

	OK response. The body of the response will include the data requested.

	400

	Bad request. The body of the response will have more info.

	401

	Unauthorized. Token is invalid.

	403

	Forbidden. Access to the requested resource is forbidden.

	408

	Timed out. The request timed out.

	429

	Too many requests. API usage limit has been reached.

	500

	Internal server error. There was an internal issue with the service.

	503

	Service unavailable. The service is unavailable.

Configurations

TwilioSMS

{
 "authToken": "cb8c5367c3c4586ecb589e25570...",
 "accountSid": "AC1fc1c1722444b0c6313d3ae988b...",
 "numberSid": "PN667435536f4d1cefdf054abf99..."
}

	Property

	Mandatory

	Description

	authToken

	Yes

	Twilio authorization token.

	accountSid

	Yes

	Twilio account SID.

	numberSid

	Yes

	Twilio phone number SID.

Response 200 (OK)

{
 "integrationId": "00000000-0000-0000-0000-000000000000",
 "hubId": "00000000-0000-0000-0000-000000000000",
 "integrationTypeId": "Customer",
 "channelId": "TwilioSMS",
 "name": "My cool integration name.",
 "statusId": 3000,
 "configuration": {
 "accountSid": "AC1fc1c1722444b0c6313d3da98...",
 "authToken": "cb8c5367c3c4586ecb589e25570....",
 "numberSid": "PN667435536f4d1cefdf054ecf9....",
 "phoneNumber": "+16476960000",
 "capabilities": {
 "mms": true,
 "sms": true,
 "voice": true
 }
 }
}

Messenger

{
 "pageAccessToken": "EAAFBmgAdBToBADCvmo5w10tmlh97uxhtorpi5Adrdo0wtwFfXfkNxxLAY29AxwBHJNfXH5rR..."
}

	Property

	Mandatory

	Description

	pageAccessToken

	Yes

	Facebook page access token.

Response 200 (OK)

{
 "integrationId": "00000000-0000-0000-0000-000000000000",
 "hubId": "00000000-0000-0000-0000-000000000000",
 "integrationTypeId": "Customer",
 "channelId": "Messenger",
 "name": "My cool integration name.",
 "statusId": 3000,
 "configuration": {
 "appId": "35360465938...",
 "pageId": "1013889883...",
 "pageAccessToken": "EAAFBm..."
 }
}

WebChat

{
 "allowedOrigins": [
 "localhost",
 "hubster.io"
],
 "start": [
 {
 "type": "text",
 "text": "Welcome to Hubster! How can we help you?"
 }
]
}

	Property

	Mandatory

	Description

	allowedOrigins

	Yes

	One or more domains hosting the WebChat component.

	start

	No

	An array of Hubster messages types.

Response 200 (OK)

{
 "integrationId": "00000000-0000-0000-0000-000000000000",
 "hubId": "00000000-0000-0000-0000-000000000000",
 "integrationTypeId": "Customer",
 "channelId": "WebChat",
 "name": "Webchat",
 "statusId": 3000,
 "configuration": {
 "AllowedOrigins": [
 "localhost",
 "hubster.io"
],
 "Echo": true,
 "Start": [
 {
 "type": "text",
 "text": "Welcome to Hubster! How can we help you?"
 }
]
 }
}

Direct

{
 "integrationType": "Agent",
 "echo": true,
 "webhookUrl": "https://url_end_point.com"
}

	Property

	Mandatory

	Description

	integrationType

	Yes

	Must be a supported integration type.

	echo

	No

	If yes, when an activity is received from this integration, it will echo it back.

	webhookUrl

	No

	The endpoint to receive Hubster Activities.
If not supplied, activities will be delivered via websockets.

	start

	No

	An array of Hubster messages types.

Response 200 (OK)

{
 "integrationId": "00000000-0000-0000-0000-000000000000",
 "hubId": "00000000-0000-0000-0000-000000000000",
 "integrationTypeId": "Agent",
 "channelId": "Direct",
 "name": "My cool integration name.",
 "statusId": 3000,
 "configuration": {
 "integrationType": "Agent",
 "echo": true,
 "webhookUrl": "https://url_end_point.com",
 "publicSigningKey": "6DF60E ...",
 "privateSigningKey": "E0A42 ...",
 "start": [
 {
 "type": "text",
 "text": "Welcome to Hubster! How can we help you?"
 }
]
}

System

{
 "webhookUrl": "https://url_end_point.com",
 "events": [
 "message:customer",
 "message:agent",
 "message:bot"
]
}

	Property

	Mandatory

	Description

	webhookUrl

	Yes

	The endpoint to receive Hubster Activities

	events

	Yes

	The activity event filter(s) to be event on.

Response 200 (OK)

{
 "integrationId": "00000000-0000-0000-0000-000000000000",
 "hubId": "00000000-0000-0000-0000-000000000000",
 "integrationTypeId": "System",
 "channelId": "System",
 "name": "My cool integration name.",
 "statusId": 3000,
 "configuration": {
 "events": [
 "message:customer",
 "message:agent",
 "message:bot"
],
 "webhookUrl": "https://url_end_point.com",
 "publicSigningKey": "6DF60E ...",
 "privateSigningKey": "E0A42 ...",
 }
}

Slack

{
 "code": "EAAFBmgAdBToBADCvmo5w10tmlh97uxhtorpi5Adrdo0wtwFfXfkNxxLAY29AxwBHJNfXH5rR...",
 "nonce" : "mo5w10t.mlh97uxh"
}

	Property

	Mandatory

	Description

	code

	Yes

	Slack oauth2 code.

	nonce

	Yes

	Verification signature.

Response 200 (OK)

{
 "integrationId": "00000000-0000-0000-0000-000000000000",
 "hubId": "00000000-0000-0000-0000-000000000000",
 "integrationTypeId": "Agent",
 "channelId": "Slack",
 "name": "My cool integration name.",
 "statusId": 3000,
 "configuration": {
 "botAccessToken": "xoxb-193043142226-...",
 "appAccessToken": "xoxp-193043142226-...",
 "defaultPublicChannel": "general",
 "teamId": "T5P19488N",
 "botName": "Hubster.io"
 }
}

Update

Updates an Integration.

POST /api/v1/integrations/hubs/{integrationId}

Headers

	Header

	Description

	Authorization

	Bearer your portal access token

	Content-Type

	application/json

Url Segments

	Segment

	Description

	integrationId

	The integration id affected.

Request Properties

	Property

	Mandatory

	Description

	name

	No

	Unique name for integration per Hub.

	statusId

	No

	Integration status.

Valid options are:

– Active = 3000

– Paused = 3002

	configuration

	No

	See configuration properties for each individual channelId.

Example Request Body

{
 "name": "Direct",
 "statusId": 3002,
 "configuration": {
 "Echo": true,
 "webhookUrl": "http://hubster.io/v1/api/integration?customer=1"
 }
}

Configurations

Note

If you need to update any configuration value, you need to provide all required values specific to that channel type.
In other words, the complete configuration object will replace the old one.

Warning

The following integration types cannot have their configuration values updated due to re-authenticating
with their respective service providers. Any attempt will be ignored.

	TwilioSMS

	Messenger

	Slack

If you need to update their configuration, you must first delete the original integration and recreate a new one.

WebChat

{
 "allowedOrigins": [
 "localhost",
 "hubster.io"
],
 "start":
 [
 {
 "type": "text",
 "text": "Welcome to Hubster! How can we help you?"
 }
]
}

	Property

	Mandatory

	Description

	allowedOrigins

	Yes

	One or more domains hosting the WebChat component.

	start

	No

	An array of Hubster messages types.

Response 200 (OK)

{
 "integrationId": "00000000-0000-0000-0000-000000000000",
 "hubId": "00000000-0000-0000-0000-000000000000",
 "integrationTypeId": "Customer",
 "channelId": "WebChat",
 "name": "Webchat",
 "statusId": 3000,
 "configuration": {
 "AllowedOrigins": [
 "localhost",
 "hubster.io"
],
 "Echo": true,
 "Start": [
 {
 "type": "text",
 "text": "Welcome to Hubster! How can we help you?"
 }
]
 }
}

Direct

{
 "integrationType": "Agent",
 "echo": true,
 "webhookUrl": "https://url_end_point.com",
 "regenerateKeys": true,
 "start": [
 {
 "type": "text",
 "text": "Welcome to Hubster! How can we help you?"
 }
]
}

	Property

	Mandatory

	Description

	integrationType

	Yes

	Must be a supported integration type.

	echo

	No

	If yes, when an activity is received from this integration, it will echo it back.

	webhookUrl

	No

	The endpoint to receive Hubster Activities.
If not supplied, activities will be delivered via websockets.

	regenerateKeys

	No

	This forces a new set of public/private keys to be generated.

	start

	No

	An array of Hubster messages types.

Response 200 (OK)

{
 "integrationId": "00000000-0000-0000-0000-000000000000",
 "hubId": "00000000-0000-0000-0000-000000000000",
 "integrationTypeId": "Agent",
 "channelId": "Direct",
 "name": "My cool integration name.",
 "statusId": 3000,
 "configuration": {
 "integrationType": "Agent",
 "echo": true,
 "webhookUrl": "https://url_end_point.com",
 "publicSigningKey": "6DF60E ...",
 "privateSigningKey": "E0A42 ...",
 "start": [
 {
 "type": "text",
 "text": "Welcome to Hubster! How can we help you?"
 }
]
}

System

{
 "webhookUrl": "https://url_end_point.com",
 "regenerateKeys": true,
 "events": [
 "message:customer",
 "message:agent",
 "message:bot"
]
}

	Property

	Mandatory

	Description

	webhookUrl

	Yes

	The endpoint to receive Hubster Activities

	regenerateKeys

	No

	This forces a new set of public/private keys to be generated.

	events

	Yes

	The activity event filter(s) to be event on.

Response 200 (OK)

{
 "integrationId": "00000000-0000-0000-0000-000000000000",
 "hubId": "00000000-0000-0000-0000-000000000000",
 "integrationTypeId": "System",
 "channelId": "System",
 "name": "My cool integration name.",
 "statusId": 3000,
 "configuration": {
 "events": [
 "message:customer",
 "message:agent",
 "message:bot"
],
 "webhookUrl": "https://url_end_point.com",
 "publicSigningKey": "6DF60E ...",
 "privateSigningKey": "E0A42 ...",
 }
}

Get

Gets an Integration.

GET /api/v1/integrations/{integrationId}

Headers

	Header

	Description

	Authorization

	Bearer your portal access token

	Content-Type

	application/json

Url Segments

	Segment

	Description

	integrationId

	The integration to get.

Response 200 (OK)

Note

The request body below uses TwilioSMS as an example. It should be noted that
configuration properties for each channel type differs.

{
 "integrationId": "00000000 ...",
 "hubId": "00000000 ...",
 "inboundId": "AC1fc1c1722444b0...",
 "integrationTypeId": 2,
 "channelId": 102,
 "name": "Twilio Test Number: 1647...",
 "statusId": 3000,
 "configuration": {
 "AcccountSid": "AC1fc1c172244...",
 "AuthToken": "cb8c5367c3c458...",
 "NumberSid": "PN667435536f4d...",
 "PhoneNumber": "+1647...",
 "Capabilities": {
 "Mms": true,
 "Sms": true,
 "Voice": true
 }
 }
}

	HTTP Status

	Description

	200

	OK response. The body of the response will include the data requested.

	401

	Unauthorized. Token is invalid.

	403

	Forbidden. Access to the requested resource is forbidden.

	404

	Not found. Resource not found.

	408

	Timed out. The request timed out.

	429

	Too many requests. API usage limit has been reached.

	500

	Internal server error. There was an internal issue with the service.

	503

	Service unavailable. The service is unavailable.

Response Body Examples

TwilioSMS

 {
 "integrationId": "00000000-0000-0000-0000-000000000000",
 "hubId": "00000000-0000-0000-0000-000000000000",
 "inboundId": "AC1fc1c1722444b0c6313d3....",
 "integrationTypeId": "Customer",
 "channelId": "TwilioSMS",
 "name": "Twilio Test Number: 16476960489",
 "statusId": 3000,
 "configuration": {
 "AccountSid": "AC1fc1c1722444b0c6313d...",
 "AuthToken": "cb8c5367c3c4586ecb589e2...",
 "NumberSid": "PN667435536f4d1cefdf054...",
 "PhoneNumber": "+16476960489",
 "Capabilities": {
 "Mms": true,
 "Sms": true,
 "Voice": true
 }
 }
}

Messenger

{
 "integrationId": "00000000-0000-0000-0000-000000000000",
 "hubId": "00000000-0000-0000-0000-000000000000",
 "inboundId": "27623838....",
 "integrationTypeId": "Customer",
 "channelId": "Messenger",
 "name": "Messenger: Hubster Biz",
 "statusId": 3000,
 "configuration": {
 "AppId": "218851140...",
 "PageId": "27623838...",
 "PageAccessToken": "EAAfGcISnoh0BAEZBihIAC..."
 }
}

Web Chat

 {
 "integrationId": "00000000-0000-0000-0000-000000000000",
 "hubId": "00000000-0000-0000-0000-000000000000",
 "integrationTypeId": "Customer",
 "channelId": "WebChat",
 "name": "Webchat for Hubster Demo (Blank) ",
 "statusId": 3000,
 "configuration": {
 "allowedOrigins": [
 "localhost",
 "hubster.io"
],
 "echo": true,
 "start": [
 {
 "type": "text",
 "text": "Welcome to Hubster! How can we help you?"
 }
]
 }
}

Direct

{
 "integrationId": "00000000-0000-0000-0000-000000000000",
 "hubId": "00000000-0000-0000-0000-000000000000",
 "integrationTypeId": "Customer",
 "channelId": "Direct",
 "name": "Direct Customer (Webhook)",
 "statusId": 3000,
 "configuration": {
 "WebhookUrl": "http://localhost:5100/v1/api/integration?customer=1",
 "publicSigningKey": "6DF60E ...",
 "privateSigningKey": "E0A42 ...",
 "Echo": false,
 "WelcomeMessage": "Welcome to Hubster! How can we help you?"
 }
}

System

{
 "integrationId": "00000000-0000-0000-0000-000000000000",
 "hubId": "00000000-0000-0000-0000-000000000000",
 "integrationTypeId": "System",
 "channelId": "System",
 "name": "My cool integration name.",
 "statusId": 3000,
 "configuration": {
 "events": [
 "message:customer",
 "message:agent",
 "message:bot"
],
 "webhookUrl": "https://url_end_point.com",
 "publicSigningKey": "6DF60E ...",
 "privateSigningKey": "E0A42 ...",
 }
}

Slack

{
 "integrationId": "00000000-0000-0000-0000-000000000000",
 "hubId": "00000000-0000-0000-0000-000000000000",
 "integrationTypeId": "Agent",
 "channelId": "Slack",
 "name": "Slack for Hubster Demo",
 "statusId": 3000,
 "configuration": {
 "BotAccessToken": "xoxb-...",
 "AppAccessToken": "xoxp-...",
 "DefaultPublicChannel": "general",
 "TeamId": "T017QM...",
 "BotName": "Hubster.io"
 }
}

Get by Channel Type

Gets a list of integrations for a given Channel Type.

GET /api/v1/integrations/hubs/{hubId}/{channelType}

Headers

	Header

	Description

	Authorization

	Bearer your portal access token

	Content-Type

	application/json

Url Segments

	Segment

	Description

	hubId

	The hub id to obtain all integrations.

	channelType

	The Channel Type to filter by.

Response : 200 (OK)

[
 {
 "integrationId": "00000000-0000-0000-0000-000000000001",
 "hubId": "00000000-0000-0000-0000-000000000000",
 "integrationTypeId": "Customer",
 "channelId": "Direct",
 "name": "Direct Customer 2 (Webhook)",
 "statusId": 3000,
 "configuration": {
 "WebhookUrl": "http://localhost:5100/v1/api/integration?customer=1",
 "publicSigningKey": "6DF60E ...",
 "privateSigningKey": "E0A42 ...",
 "Echo": false,
 "WelcomeMessage": "Welcome to Hubster! How can we help you?"
 }
 },
 {
 "integrationId": "00000000-0000-0000-0000-000000000002",
 "hubId": "00000000-0000-0000-0000-000000000000",
 "integrationTypeId": "Agent",
 "channelId": "Direct",
 "name": "Direct Agent (Websocket)",
 "statusId": 3000,
 "configuration": {
 "Echo": true
 }
 }
]

	HTTP Status

	Description

	200

	OK response. The body of the response will include the data requested.

	401

	Unauthorized. Token is invalid.

	403

	Forbidden. Access to the requested resource is forbidden.

	408

	Timed out. The request timed out.

	429

	Too many requests. API usage limit has been reached.

	500

	Internal server error. There was an internal issue with the service.

	503

	Service unavailable. The service is unavailable.

Get Collection

Gets a list of integrations.

GET /api/v1/integrations

Headers

	Header

	Description

	Authorization

	Bearer your portal access token

	Content-Type

	application/json

Url Arguments

	Argument

	Mandatory

	Description

	hubId

	No

	Filter by hub id.

	pageNumber

	No

	The requested page number. Must be >= 0.

	pageSize

	No

	The requested page size. Must be >= 1 and <= 100.

Response : 200 (OK)

paginated

{
 "pageNumber": 0,
 "pageSize": 50,
 "total": 2,
 "results": [
 {
 "hubId": "3bc1e69f-c520-446f-ab2c-01751fd66a31",
 "tenantId": "abc1e69f-c888-875f-ee2c-45789fd66a00",
 "name": "Your New Cool Hub Name",
 "description": "This hub is cool",
 "closeDormantConversation": 30,
 "statusId": 2000
 },
 {
 "hubId": "3bc1e69f-c520-446f-ab2c-01751fd66a32",
 "tenantId": "abc1e69f-c888-875f-ee2c-45789fd66a01",
 "name": "Your New Cool Hub Name 2",
 "description": "This hub is cool 2",
 "closeDormantConversation": 30,
 "statusId": 2000
 }
]
 }

	HTTP Status

	Description

	200

	OK response. The body of the response will include the data requested.

	400

	Bad request. The body of the response will have more info.

	401

	Unauthorized. Token is invalid.

	403

	Forbidden. Access to the requested resource is forbidden.

	408

	Timed out. The request timed out.

	429

	Too many requests. API usage limit has been reached.

	500

	Internal server error. There was an internal issue with the service.

	503

	Service unavailable. The service is unavailable.

Transfer Commands

Note

Transfer Commands are only respected by the WebChat device
at this time. Sending transfers to other devices will be
ignored.

Create

Creates a Transfer Command.

POST /api/v1/commands/transfers/{hubId}

Headers

	Header

	Description

	Authorization

	Bearer your portal access token

	Content-Type

	application/json

Url Segments

	Segment

	Description

	hubId

	The Hub id to create commands for.

Request Properties

	Property

	Mandatory

	Description

	name

	Yes

	Unique command name per Hub.

	description

	No

	Command description.

	url

	Yes

	Command url.

	linkDescription

	Yes

	The description used for the link anchor on the WebChat device.

	mountDelay

	No

	
Amount of in milliseconds before mounting occurs.

Default is 0, if no value supplied.

mountDelay < 0, will not mount the WebChat

mountDelay = 0, will immediately mount the WebChat

Example Request Body

{
 "name": "new cool command",
 "description": "Description for command",
 "url": "https://mysite.io",
 "linkDescription": "Click here to be transferred",
 "mountDelay": 1000
}

Response : 200 (OK)

{
 "commandId": "5a0623b0-d51a-4b3c-ace1-0175e34fae2f",
 "hubId": "00000000-0000-0000-0000-0000000000a1",
 "name": "new cool command",
 "description": "Description for command",
 "url": "https://mysite.io",
 "linkDescription": "Click here to be transferred",
 "mountDelay": 1000
}

	HTTP Status

	Description

	200

	OK response. The body of the response will include the data requested.

	400

	Bad request. The body of the response will have more info.

	401

	Unauthorized. Token is invalid.

	403

	Forbidden. Access to the requested resource is forbidden.

	408

	Timed out. The request timed out.

	429

	Too many requests. API usage limit has been reached.

	500

	Internal server error. There was an internal issue with the service.

	503

	Service unavailable. The service is unavailable.

Update

Updates a Transfer Command.

PUT /api/v1/commands/transfers/{commandId}

Headers

	Header

	Description

	Authorization

	Bearer your portal access token

	Content-Type

	application/json

Url Segments

	Segment

	Description

	commandId

	The command id affected.

Request Properties

	Property

	Mandatory

	Description

	name

	No

	Unique command name per Hub.

	description

	No

	Command description.

	url

	No

	Command url.

	linkDescription

	Yes

	The description used for the link anchor on the WebChat device.

	mountDelay

	No

	
Amount of in milliseconds before mounting occurs.

Default is 0, if no value supplied.

mountDelay < 0, will not mount the WebChat

mountDelay = 0, will immediately mount the WebChat

Example Request Body

{
 "name": "new cool command",
 "description": "Description for command",
 "url": "https://mysite.io",
 "linkDescription": "Click here to be transferred",
 "mountDelay": 1000
}

Response : 200 (OK)

{
 "commandId": "5a0623b0-d51a-4b3c-ace1-0175e34fae2f",
 "hubId": "00000000-0000-0000-0000-0000000000a1",
 "name": "new cool command",
 "description": "Description for command",
 "url": "https://mysite.io",
 "linkDescription": "Click here to be transferred",
 "mountDelay": 1000
}

	HTTP Status

	Description

	200

	OK response. The body of the response will include the data requested.

	400

	Bad request. The body of the response will have more info.

	401

	Unauthorized. Token is invalid.

	403

	Forbidden. Access to the requested resource is forbidden.

	404

	Not found. Resource not found.

	408

	Timed out. The request timed out.

	429

	Too many requests. API usage limit has been reached.

	500

	Internal server error. There was an internal issue with the service.

	503

	Service unavailable. The service is unavailable.

Delete

Deletes a Transfer Command.

DELETE /api/v1/commands/transfers/{commandId}

Headers

	Header

	Description

	Authorization

	Bearer your portal access token

	Content-Type

	application/json

Url Segments

	Segment

	Description

	commandId

	The transfer command id.

Response : 200 (OK)

	HTTP Status

	Description

	200

	OK response. The body of the response will include the data requested.

	401

	Unauthorized. Token is invalid.

	403

	Forbidden. Access to the requested resource is forbidden.

	404

	Not found. Resource not found.

	408

	Timed out. The request timed out.

	429

	Too many requests. API usage limit has been reached.

	500

	Internal server error. There was an internal issue with the service.

	503

	Service unavailable. The service is unavailable.

Get

Gets a Transfer Command.

GET /api/v1/commands/transfers/{commandId}

Headers

	Header

	Description

	Authorization

	Bearer your portal access token

	Content-Type

	application/json

Url Segments

	Segment

	Description

	commandId

	The transfer command id to get.

Response : 200 (OK)

{
 "commandId": "5a0623b0-d51a-4b3c-ace1-0175e34fae2f",
 "hubId": "00000000-0000-0000-0000-0000000000a1",
 "name": "new cool command",
 "description": "Description for command",
 "url": "https://mysite.io",
 "linkDescription": "Click here to be transferred",
 "mountDelay": 1000
}

	HTTP Status

	Description

	200

	OK response. The body of the response will include the data requested.

	401

	Unauthorized. Token is invalid.

	403

	Forbidden. Access to the requested resource is forbidden.

	404

	Not found. Resource not found.

	408

	Timed out. The request timed out.

	429

	Too many requests. API usage limit has been reached.

	500

	Internal server error. There was an internal issue with the service.

	503

	Service unavailable. The service is unavailable.

Get Collection

Gets a list of Transfer Commands.

GET /api/v1/commands/transfers/hub/{hubId}

Headers

	Header

	Description

	Authorization

	Bearer your portal access token

	Content-Type

	application/json

Url Segments

	Segment

	Description

	hubId

	The Hub id to get transfer commands for.

Response : 200 (OK)

[
 {
 "commandId": "5a0623b0-d51a-4b3c-ace1-0175e34fae2f",
 "hubId": "00000000-0000-0000-0000-0000000000a1",
 "name": "new command 2",
 "description": "Description for command",
 "url": "https://mysite.io",
 "linkDescription": "Click here to be transferred",
 "mountDelay": 1000
 }
]

	HTTP Status

	Description

	200

	OK response. The body of the response will include the data requested.

	400

	Bad request. The body of the response will have more info.

	401

	Unauthorized. Token is invalid.

	403

	Forbidden. Access to the requested resource is forbidden.

	408

	Timed out. The request timed out.

	429

	Too many requests. API usage limit has been reached.

	500

	Internal server error. There was an internal issue with the service.

	503

	Service unavailable. The service is unavailable.

Response Commands

Create

Creates a Response Command.

POST /api/v1/commands/responses/{hubId}

Headers

	Header

	Description

	Authorization

	Bearer your portal access token

	Content-Type

	application/json

Url Segments

	Segment

	Description

	hubId

	The Hub id to create commands for.

Request Properties

	Property

	Mandatory

	Description

	name

	Yes

	Unique command name per Hub.

	category

	No

	Command category.

	description

	No

	Command description.

	integrationTypeId

	Yes

	
Type of integration command is used for.

Valid options are:

– agent

– customer

	type

	Yes

	
Response command type.

Valid options are:

– message

– event

	responses

	Yes

	A list of Message or Event types.

Example Request Body

{
 "name": "contact-eva.green",
 "category": "contacts",
 "description": "Eva's Contact",
 "integrationTypeId": "customer",
 "type": "message",
 "responses": [
 {
 "type": "text",
 "text": "Below is my contact info"
 },
 {
 "type": "contact",
 "imageUrl": "https://image.png",
 "title": "Eva Green",
 "properties": [
 {
 "key": "Title",
 "value": "Mighty Health"
 },
 {
 "key": "Address",
 "value": "108 Kirkbride Crescent, Maple, ON",
 "type": "address;work"
 },
 {
 "key": "Cell",
 "value": "+1 (714) 873-6202",
 "type": "phone;cell"
 },
 {
 "key": "Email",
 "value": "eva@mightyhealth.com",
 "type": "email"
 }
],
 "channels": [
 {
 "type": "Webchat",
 "metadata": [
 {
 "key": "caption-show",
 "value": "true"
 },
 {
 "key": "caption-color",
 "value": "white"
 }
]
 }
]
 }
]
}

Response : 200 (OK)

{
 "commandId": "00000000-0000-0000-0000-000000000005",
 "hubId": "00000000-0000-0000-0000-0000000000a1",
 "name": "contact-eva.green",
 "category": "contacts",
 "description": "Eva's Contact",
 "integrationTypeId": "customer",
 "type": "message",
 "responses": [
 {
 "type": "text",
 "text": "Below is my contact info"
 },
 {
 "type": "contact",
 "imageUrl": "https://image.png",
 "title": "Eva Green",
 "properties": [
 {
 "key": "Title",
 "value": "Mighty Health"
 },
 {
 "key": "Address",
 "value": "108 Kirkbride Crescent, Maple, ON",
 "type": "address;work"
 },
 {
 "key": "Cell",
 "value": "+1 (714) 873-6202",
 "type": "phone;cell"
 },
 {
 "key": "Email",
 "value": "eva@mightyhealth.com",
 "type": "email"
 }
],
 "channels": [
 {
 "type": "Webchat",
 "metadata": [
 {
 "key": "caption-show",
 "value": "true"
 },
 {
 "key": "caption-color",
 "value": "white"
 }
]
 }
]
 }
]
}

	HTTP Status

	Description

	200

	OK response. The body of the response will include the data requested.

	400

	Bad request. The body of the response will have more info.

	401

	Unauthorized. Token is invalid.

	403

	Forbidden. Access to the requested resource is forbidden.

	408

	Timed out. The request timed out.

	429

	Too many requests. API usage limit has been reached.

	500

	Internal server error. There was an internal issue with the service.

	503

	Service unavailable. The service is unavailable.

Update

Updates a Response Command.

PUT /api/v1/commands/responses/{commandId}

Headers

	Header

	Description

	Authorization

	Bearer your portal access token

	Content-Type

	application/json

Url Segments

	Segment

	Description

	commandId

	The command id affected.

Request Properties

	Property

	Mandatory

	Description

	name

	Yes

	Unique command name per Hub.

	category

	No

	Command category.

	description

	No

	Command description.

	integrationTypeId

	Yes

	
Type of integration command is used for.

Valid options are:

– agent

– customer

	type

	Yes

	
Response command type.

Valid options are:

– message

– event

	responses

	Yes

	A list of Message or Event types.

Example Request Body

{
 "category": "Office contacts",
 "description": "Eva's Office Contact",
}

Response : 200 (OK)

{
 "commandId": "00000000-0000-0000-0000-000000000005",
 "hubId": "00000000-0000-0000-0000-0000000000a1",
 "name": "contact-eva.green",
 "category": "Office contacts",
 "description": "Eva's Office Contact",
 "integrationTypeId": "customer",
 "type": "message",
 "responses": [
 {
 "type": "text",
 "text": "Below is my contact info"
 },
 {
 "type": "contact",
 "imageUrl": "https://image.png",
 "title": "Eva Green",
 "properties": [
 {
 "key": "Title",
 "value": "Mighty Health"
 },
 {
 "key": "Address",
 "value": "108 Kirkbride Crescent, Maple, ON",
 "type": "address;work"
 },
 {
 "key": "Cell",
 "value": "+1 (714) 873-6202",
 "type": "phone;cell"
 },
 {
 "key": "Email",
 "value": "eva@mightyhealth.com",
 "type": "email"
 }
],
 "channels": [
 {
 "type": "Webchat",
 "metadata": [
 {
 "key": "caption-show",
 "value": "true"
 },
 {
 "key": "caption-color",
 "value": "white"
 }
]
 }
]
 }
]
}

	HTTP Status

	Description

	200

	OK response. The body of the response will include the data requested.

	400

	Bad request. The body of the response will have more info.

	401

	Unauthorized. Token is invalid.

	403

	Forbidden. Access to the requested resource is forbidden.

	404

	Not found. Resource not found.

	408

	Timed out. The request timed out.

	429

	Too many requests. API usage limit has been reached.

	500

	Internal server error. There was an internal issue with the service.

	503

	Service unavailable. The service is unavailable.

Delete

Deletes a Response Command.

DELETE /api/v1/commands/responses/{commandId}

Headers

	Header

	Description

	Authorization

	Bearer your portal access token

	Content-Type

	application/json

Url Segments

	Segment

	Description

	commandId

	The response command id.

Response : 200 (OK)

	HTTP Status

	Description

	200

	OK response. The body of the response will include the data requested.

	401

	Unauthorized. Token is invalid.

	403

	Forbidden. Access to the requested resource is forbidden.

	404

	Not found. Resource not found.

	408

	Timed out. The request timed out.

	429

	Too many requests. API usage limit has been reached.

	500

	Internal server error. There was an internal issue with the service.

	503

	Service unavailable. The service is unavailable.

Get

Gets a Response Command.

GET /api/v1/commands/responses/{commandId}

Headers

	Header

	Description

	Authorization

	Bearer your portal access token

	Content-Type

	application/json

Url Segments

	Segment

	Description

	commandId

	The response command id to get.

Response : 200 (OK)

{
 "commandId": "00000000-0000-0000-0000-000000000005",
 "hubId": "00000000-0000-0000-0000-0000000000a1",
 "name": "contact-eva.green",
 "category": "Office contacts",
 "description": "Eva's Office Contact",
 "integrationTypeId": "customer",
 "type": "message",
 "responses": [
 {
 "type": "text",
 "text": "Below is my contact info"
 },
 {
 "type": "contact",
 "imageUrl": "https://image.png",
 "title": "Eva Green",
 "properties": [
 {
 "key": "Title",
 "value": "Mighty Health"
 },
 {
 "key": "Address",
 "value": "108 Kirkbride Crescent, Maple, ON",
 "type": "address;work"
 },
 {
 "key": "Cell",
 "value": "+1 (714) 873-6202",
 "type": "phone;cell"
 },
 {
 "key": "Email",
 "value": "eva@mightyhealth.com",
 "type": "email"
 }
],
 "channels": [
 {
 "type": "Webchat",
 "metadata": [
 {
 "key": "caption-show",
 "value": "true"
 },
 {
 "key": "caption-color",
 "value": "white"
 }
]
 }
]
 }
]
}

	HTTP Status

	Description

	200

	OK response. The body of the response will include the data requested.

	401

	Unauthorized. Token is invalid.

	403

	Forbidden. Access to the requested resource is forbidden.

	404

	Not found. Resource not found.

	408

	Timed out. The request timed out.

	429

	Too many requests. API usage limit has been reached.

	500

	Internal server error. There was an internal issue with the service.

	503

	Service unavailable. The service is unavailable.

Get Collection

Gets a list of Response Commands.

GET /api/v1/commands/responses/hub/{hubId}

Headers

	Header

	Description

	Authorization

	Bearer your portal access token

	Content-Type

	application/json

Url Segments

	Segment

	Description

	hubId

	The Hub id to get response commands for.

Response : 200 (OK)

[
 {
 "commandId": "00000000-0000-0000-0000-000000000005",
 "hubId": "00000000-0000-0000-0000-0000000000a1",
 "name": "contact-eva.green",
 "category": "Office contacts",
 "description": "Eva's Office Contact",
 "integrationTypeId": "customer",
 "type": "message",
 "responses": [
 {
 "type": "text",
 "text": "Below is my contact info"
 },
 {
 "type": "contact",
 "imageUrl": "https://image.png",
 "title": "Eva Green",
 "properties": [
 {
 "key": "Title",
 "value": "Mighty Health"
 },
 {
 "key": "Address",
 "value": "108 Kirkbride Crescent, Maple, ON",
 "type": "address;work"
 },
 {
 "key": "Cell",
 "value": "+1 (714) 873-6202",
 "type": "phone;cell"
 },
 {
 "key": "Email",
 "value": "eva@mightyhealth.com",
 "type": "email"
 }
],
 "channels": [
 {
 "type": "Webchat",
 "metadata": [
 {
 "key": "caption-show",
 "value": "true"
 },
 {
 "key": "caption-color",
 "value": "white"
 }
]
 }
]
 }
]
 },
 {
 "commandId": "00000000-0000-0000-0000-000000000006",
 "hubId": "00000000-0000-0000-0000-0000000000a1",
 "name": "Command-5",
 "category": "Command-5",
 "description": "Command-5",
 "integrationTypeId": "agent",
 "type": "event",
 "responses": [
 {
 "type": "payload",
 "payloadType": "type1",
 "payload": {
 "payload": "Hello"
 }
 }
]
 }
]

	HTTP Status

	Description

	200

	OK response. The body of the response will include the data requested.

	400

	Bad request. The body of the response will have more info.

	401

	Unauthorized. Token is invalid.

	403

	Forbidden. Access to the requested resource is forbidden.

	408

	Timed out. The request timed out.

	429

	Too many requests. API usage limit has been reached.

	500

	Internal server error. There was an internal issue with the service.

	503

	Service unavailable. The service is unavailable.

Engine

The Engine Service is a realtime eventing service that coordinates
conversation workflows between customer, business and external channels.

See the The Big Picture for more info.

Below is the list of API collections for Hubster’s Engine service.

	Conversations

	Interactions

	Direct

Conversations

Get Conversation

Get Conversation object using conversation identifier.

GET /api/v1/conversations/{conversationId}

Headers

	Header

	Description

	Authorization

	Bearer your engine access token

	Content-Type

	application/json

Url Segments

	Segment

	Description

	conversationId

	The conversation id to get.

Response : 200 (OK)

{
 "conversationId": "a9cff9d8-0cb2-40f9-b787-01756ca7b92f",
 "integrationId": "...000000000023",
 "tokenId": "9jP61d8EfmVgSnUtBZsMNw==",
 "integration": {
 "integrationId": "...000000000023",
 "hubId": "...0000000000a2",
 "hub": {
 "hubId": "...0000000000a2",
 "tenantId": "...000000000001",
 "name": "Dev Hub (Websocket)",
 "description": "Dev Hub 2 (Websocket)",
 "statusId": 2000,
 "created": "2019-01-01T00:00:00",
 "modified": "2019-01-01T00:00:00"
 },
 "integrationTypeId": "Customer",
 "channelId": "Direct",
 "name": "Direct Customer Webhook",
 "statusId": 3000,
 "created": "2018-01-01T00:00:00",
 "modified": "2018-01-01T00:00:00"
 },
 "properties": {
 "profile": {
 "device": "Direct",
 "full name": "Any name"
 },
 "additional": {}
 },
 "openedDateTime": "2019-10-28T00:42:12.6452901"
}

	HTTP Status

	Description

	200

	OK response. The body of the response will include the data requested.

	401

	Unauthorized. Token is invalid.

	403

	Forbidden. Access to the requested resource is forbidden.

	404

	Not found. Resource not found.

	408

	Timed out. The request timed out.

	429

	Too many requests. API usage limit has been reached.

	500

	Internal server error. There was an internal issue with the service.

	503

	Service unavailable. The service is unavailable.

Establish Conversation

Establish (create) new Conversation object.

POST /api/v1/conversations/establish

Headers

	Header

	Description

	Authorization

	Bearer your engine access token

	Content-Type

	application/json

Request Properties

	Property

	Mandatory

	Description

	integrationId

	Yes

	Integration identifier.

	binding

	Yes

	Binding key used to get conversation.

	channelType

	Yes

	Type of channel to filter by.

Valid option is:

– Direct = 2000

	properties

	No

	See properties object for more info.

Note

Properties can be though of as metadata bound to a conversation during establishment.
When working for Direct interaction types, the developer can assigned any number properties as
necessary. Properties can have one or more collections each containing key/value pairs.
In the example below, two such collections have been defined.

By default, Hubster will generate a profile collection if not defined. This collection
will contain at most, a device and full name key/value pair.
The developer can override anyone of the following values but can also add their own
custom key/value pair:

	profile.device

	profile.full name

	profile.first name

	profile.last name

	profile.user name

	profile.gender

	profile.local

	profile.time zone

	profile.imageUrl

	profile.phone

	profile.address

	profile.email

If profile.device is not provided, Hubster will default to Direct.

If profile.full name is not provided, Hubster will default to a random fun-name.

Properties

{
 "profile": {
 "device": "Direct",
 "full name":"User name here",
 "phone": "416-555-0001",
 "some_custom1": "value1",
 "some_custom2": "value2"
 },
 "additional": {
 "some_custom1": "value1",
 "some_custom2": "value2"
 }
}

Response 200 (OK)

{
 "tenantId": "...000000000001",
 "hubId": "...0000000000a2",
 "integrationId": "...000000000023",
 "conversationId": "a9cff9d8-0cb2-40f9-b787-01756ca7b92f",
 "tokenId": "9jP61d8EfmVgSnUtBZsMNw==",
 "openedDateTime": "2020-10-28T00:42:12.6452901Z",
 "isNew": true,
 "properties": {
 "profile": {
 "device": "Direct",
 "full name": "User name here"
 },
 "additional": {}
 }
}

Interactions

Get Activities

Get Activities for a given conversation.

GET /api/v1/interactions/activities/{conversationId}

Headers

	Header

	Description

	Authorization

	Bearer your engine access token

	Content-Type

	application/json

Url Segments

	Segment

	Description

	conversationId

	The conversationId id used to retrieve activities.

Request Properties

	Property

	Mandatory

	Description

	type

	Yes

	
The sender or recipient integration type that you want to retrieve activities for.
For example, if type = ‘agent’, than all activities whereby,
the sender or recipient type = ‘agent’, will be retrieved.

Only the following integration types are valid:

	Customer

	Agent

	Bot

	leid

	No

	
The last starting point event timestamp that you want to retrieve activities from for the given conversation.
The value must be in UNIX epoch time in milliseconds (UTC)

Default is 0, if no value supplied.

Response : 200 (OK)

[
 {
 "type": "message",
 "eventTrigger": "message:customer",
 "eventId": 1604758399703,
 "externalId": "some_external_id_0001",
 "isEcho": false,
 "interactionId": "1368fd94-bd85-4dcf-84c7-0175a30dead7",
 "flowProcess": "Default",
 "sender": {
 "integrationId": "00000000-0000-0000-0000-000000000020",
 "integrationType": "Customer",
 "channelType": "WebChat",
 "tokenId": "LDDKEgUsKUmjQzwjNAhL1w=="
 },
 "recipient": {
 "integrationId": "00000000-0000-0000-0000-000000000024",
 "integrationType": "Agent",
 "channelType": "Slack",
 "tokenId": "f7cbbd3d-3071-45d7-abed-01744cad6a7e.00000000-0000-0000-0000-000000000024"
 },
 "message": {
 "text": "Hi there!",
 "type": "text"
 }
 },
 {
 "type": "message",
 "eventTrigger": "message:agent",
 "eventId": 1604783877593,
 "externalId": "some_external_id_0002",
 "isEcho": false,
 "interactionId": "13da6b0b-0d66-4277-9e9d-0175a492adda",
 "flowProcess": "Default",
 "sender": {
 "integrationId": "00000000-0000-0000-0000-000000000024",
 "integrationType": "Agent",
 "channelType": "Slack",
 "tokenId": "f7cbbd3d-3071-45d7-abed-01744cad6a7e.00000000-0000-0000-0000-000000000024"
 },
 "recipient": {
 "integrationId": "00000000-0000-0000-0000-000000000020",
 "integrationType": "Customer",
 "channelType": "WebChat",
 "tokenId": "LDDKEgUsKUmjQzwjNAhL1w=="
 },
 "message": {
 "text": "Hello! How can I help you today?",
 "type": "text"
 }
 }
]

	HTTP Status

	Description

	200

	OK response. The body of the response will include the data requested.

	401

	Unauthorized. Token is invalid.

	403

	Forbidden. Access to the requested resource is forbidden.

	404

	Not found. Resource not found.

	408

	Timed out. The request timed out.

	429

	Too many requests. API usage limit has been reached.

	500

	Internal server error. There was an internal issue with the service.

	503

	Service unavailable. The service is unavailable.

Direct

The Direct API is used primarily by Direct Channel Types when submitting
Message or
Event
Activity types.

POST /inbound/customer/v1/direct/activity/{conversationId}

Headers

	Header

	Description

	Authorization

	Bearer your portal access token

	Content-Type

	application/json

Url Segments

	Segment

	Description

	conversationId

	The conversation id to send this activity.

Request Properties

When sending activities, there’s a minimal amount of header properties that are required.
See details below:

	Property

	Mandatory

	Description

	type

	Yes

	The type of activity to send.
This can only be message type or
event type

	sender.integrationId

	See Description

	
If the source of integrationId is bound to a customer integration, then this property is not required.

However, if the integrationId is bound to either an agent or bot integration, then this property is required.

	externalId

	No

	This can be any string value and will be attached to the lifetime of this activity if provided by the sender.
Typically this is used by tenants to maintain a reference or metadata to a given tenant resource.
For the most part this value will be null.

	message

	See Description

	When type is set to message
then this node is required.

	event

	See Description

	When type is set to event
then this node is required.

Example Request Body

{
 "externalId": "some-external-id",
 "type": "message | event",
 "sender": {
 "integrationId": "00000000-0000-0000-0000-000000000001"
 },
 "message": {
 "type": "text",
 "text": "Hi there!"
 },
 "event": {
 "type": "payload",
 "payloadType": "my.payload.01",
 "payload": {
 "data1": "value1",
 "data2": "value2",
 "data3": "value3"
 }
 }
}

Response : 200 (OK)

{
 "status": 200,
 "eventId": 1609281295385,
 "externalId": "some-external-id",
 "hubId": "00000000-0000-0000-0000-0000000000a1",
 "conversationId": "290e83ff-0ae1-4a62-ae8e-01759ad73ffd",
 "integrationId": "00000000-0000-0000-0000-000000000001",
 "interactionId": "d645f70e-30e2-4649-938c-0176b0a3d41b"
}

Note

If the activity type was event, then the interactionId will not be part of
the response.

	HTTP Status

	Description

	200

	OK response. The body of the response will include the data requested.

	400

	Bad request. The body of the response will have more info.

	401

	Unauthorized. Token is invalid.

	403

	Forbidden. Access to the requested resource is forbidden.

	408

	Timed out. The request timed out.

	429

	Too many requests. API usage limit has been reached.

	500

	Internal server error. There was an internal issue with the service.

	503

	Service unavailable. The service is unavailable.

Activities

When integrating with disparate systems, data coming in or data going out, most likely come in
various shapes and formats. In Hubster’s case, most integrations may have similar functionalities,
however, each integration on their own, have proprietary formats that differ from each other.
Because of these numerous differences, it’s important to generalize their formats into a common format that
is agnostic and most of all consistent. At Hubster, we call this common format an Activity.
This in essence, is the hallmark behind the concept of unified messaging.

This section will explain what an activity is, it’s constituents and how it’s consumed by Hubster’s conversation pipeline.
See the depiction below for annotated description on how Hubster transforms both in and outbound data models.

[image: ../_images/transformation.png]
How Hubster’s UX Multi-rendering/Response Framework (RRF) works:

	When data is sent by a specific integration type, the inbound RRF will transform this data into a Hubster activity for further consumption.

	The conversation pipeline can now freely work and amend the activity without any knowledge of its original source format.

	Once the conversation pipeline completes its workflow, it will send the response to the outbound RRF which transforms
the activity to the appropriate integration type’s proprietary format.

Activity

An activity is fairly simple structure that contains either a single Message
or a Event type, but not both.

Note

For sake of sample, both message and event nodes are shown.
However, these nodes are mutually exclusive and will never be presented together
in actuality.

{
 "type": "message|action",
 "eventTrigger": "message:customer",
 "eventId": 1603933721542,
 "externalId": "my-external-id",
 "isEcho": false,
 "interactionId": "00000000-0000-0000-0000-000000000005",
 "flowProcess": "Default",
 "sender": {
 "integrationId": "00000000-0000-0000-0000-000000000001",
 "integrationType": "Customer",
 "channelType": "Direct",
 "tokenId": "t+8qymYD1jp7wDSHG+3eUA=="
 },
 "recipient": {
 "integrationId": "00000000-0000-0000-0000-000000000006",
 "integrationType": "Agent",
 "channelType": "Direct",
 "tokenId": "971480cb-938c-4dfd-be4e-01756c833490.00000000-0000-0000-0000-000000000003"
 },
 "message": {
 "type": "text",
 "text": "Hi there!"
 },
 "event": {
 "type": "payload",
 "payloadType": "hubster.transfer",
 "payload": {
 "url": "http://localhost:4200",
 "label": "Click here to be transferred",
 "mount": 1000,
 "force": false
 }
 }
}

	Property

	Description

	type

	The is the type of activity being described. Can either be a message or action.

	eventTrigger

	The source of the trigger. Typically this is the sender of of the activity. See Integration Types

	eventId

	The epoch UNIX time in milliseconds when this event was initiated.

	externalId

	This can be any string value and will be attached to the lifetime of this activity if provided by the sender.
Typically this is used by tenants to maintain a reference or metadata to a given tenant resource.
For the most part this value will be null.

	isEcho

	A boolean state indicating wither the activity is an echo. Some custom integrations when sending an
activity may wish to receive a feedback activity. This is because when sending an activity, the sender
tends to send minimal data. Having echo enabled, the sender will receive a more enriched payload
with additional data that can be important to the sender. For example, if the sender sends a
youtube link in the message text, Hubster will convert the activity to youtube
message type instead.

	interactionId

	The interaction id for this activity. This only applies to message types.

	flowProcess

	The pipeline flow that was taken. The current values are Default or AutoReplay.

	sender

	The sender source of this activity.

	recipient

	The recipient (receiver) source of this activity.

	message

	If the activity.type is message then this value is required.
See message type for more details

	event

	If the activity.type is event then this value is required.
See event type for more details

Activity Header

When sending activities, there’s a minimal amount of header properties that are required.
See details below:

	Property

	Mandatory

	Description

	type

	Yes

	The type of activity to send.
This can only be message or
event

	sender.integrationId

	See Description

	
If the source of integrationId is bound to a customer integration, then this property is not required.

However, if the integrationId is bound to either an agent or bot integration, then this property is required.

	externalId

	No

	This can be any string value and will be attached to the lifetime of this activity if provided by the sender.
Typically this is used by tenants to maintain a reference or metadata to a given tenant resource.
For the most part this value will be null.

{
 "externalId": "some-external-id",
 "type": "message | event",
 "sender": {
 "integrationId": "00000000-0000-0000-0000-000000000001"
 },
 "message": {
 "type": "text",
 "text": "Hi there!"
 },
 "event": {
 "type": "payload",
 "payloadType": "my.payload.01",
 "payload": {
 "data1": "value1",
 "data2": "value2",
 "data3": "value3"
 }
 }
}

Activity Source

An activity will always contain a sender and recipient nodes.
The the sender is the source of the activity and
the recipient is the source that will receive the activity.

{
 "sender": {
 "integrationId": "00000000-0000-0000-0000-000000000001",
 "integrationType": "Customer",
 "channelType": "Direct",
 "tokenId": "t+8qymYD1jp7wDSHG+3eUA=="
 },
 "recipient": {
 "integrationId": "00000000-0000-0000-0000-000000000006",
 "integrationType": "Agent",
 "channelType": "Direct",
 "tokenId": "971480cb-938c-4dfd-be4e-01756c833490.00000000-0000-0000-0000-000000000003"
 }
}

	Property

	Description

	integrationId

	The integration id of the source.

	integrationType

	The integration type of the source.

	channelType

	The channel type of the source.

	tokenId

	Reserved for Hubster.

Message Types

An activity message supports the following types. Messages are an activity’s first-class-citizen
as they make up the majority of events being sent and received between integrations.

Note

Activities are send via the Direct API endpoint.
Sending an activity is quite simple and requires minimal amount of header details.
Once Hubster receives an activity to process, the engine will enrich the activity with
more details, such as sources, etc. See Activity on this page.

Text

Sources allowed to send: customer, agent and bot.

	Property

	Mandatory

	Description

	type

	Yes

	Must be text.

	text

	See note

	
The text message to send.

Links such as Image, Youtube, Vimeo, Video, Audio or location, may convert this message type to it’s property message equivalent
if no additional text was provided. If additional text was provided, then Hubster will add a message equivalent, such as Youtube, for example
to the items array.

	items

	See note

	
A list of items containing zero or more of the following messages types:

	youtube

	vimeo

	video

	audio

	image

	attachment

	location

	contact

	card

	actions

	See note

	
A list of actions containing zero or more of the following action types:

	postback

	reply

	link

Note

The text message type must provide one or more of the following mandatory values:

	text

	items

	actions

Examples

	Request

	View

	{
 "type": "text",
 "text": "Hello there, how can I help you?"
}

	[image: ../_images/activity_text_ex_01.png]

	{
 "type": "text",
 "text": "Here's my contact info",
 "items": [
 {
 "type": "contact",
 "imageUrl": "https://site.com/eva.png",
 "title": "Eva Green",
 "subtitle": "Mighty Health",
 "properties": [
 {
 "key": "Title",
 "value": "Health Advisor/Coach"
 },
 {
 "key": "Address",
 "value": "123 Main Street, Maple, ON",
 "type": "address;work"
 },
 {
 "key": "Cell",
 "value": "(416) 555-0001",
 "type": "phone;cell"
 },
 {
 "key": "Email",
 "value": "eva@mightyhealth.com",
 "type": "email"
 }
],
 "channels": [
 {
 "type": "Webchat",
 "metadata": [
 {
 "key": "caption-show",
 "value": "true"
 },
 {
 "key": "caption-color",
 "value": "white"
 }
]
 }
]
 }
]
}

	[image: ../_images/activity_text_ex_02.png]

	{
 "type": "text",
 "text": "Select one of the following options",
 "actions": [
 {
 "type": "postback",
 "title": "Yes",
 "payload": "Yes",
 "channels": [
 {
 "type": "Webchat",
 "metadata": [
 {
 "key": "type",
 "value": "primary"
 }
]
 }
]
 },
 {
 "type": "postback",
 "title": "Maybe",
 "payload": "Maybe",
 "channels": [
 {
 "type": "Webchat",
 "metadata": [
 {
 "key": "type",
 "value": "danger"
 }
]
 }
]
 },
 {
 "type": "reply",
 "title": "No",
 "payload": "No",
 "channels": [
 {
 "type": "Webchat",
 "metadata": [
 {
 "key": "type",
 "value": "success"
 }
]
 }
]
 },
 {
 "type": "link",
 "title": "hubster",
 "url": "https://hubster.io",
 "channels": [
 {
 "type": "Webchat",
 "metadata": [
 {
 "key": "type",
 "value": "info"
 }
]
 }
]
 }
]
}

	[image: ../_images/activity_text_ex_03.png]

Youtube

Sources allowed to send: customer, agent and bot.

	Property

	Mandatory

	Description

	type

	Yes

	Must be youtube.

	url

	Yes

	
The youtube url, which can be in anyone of the following formats:

	https://youtube.com/embed/x1245b (preferred)

	https://youtube.com/watch?v=x1245b

	https://m.youtube.com/watch?v=x1245b

	https://youtu.be/watch?v=x1245b

Example

	Request

	View

	{
 "type": "youtube",
 "url": "https://youtube.com/watch?v=x1245b"
}

	[image: ../_images/activity_youtube_ex_01.png]

Vimeo

Sources allowed to send: customer, agent and bot.

	Property

	Mandatory

	Description

	type

	Yes

	Must be vimeo.

	url

	Yes

	
The Vimeo url, which can be in anyone of the following formats:

	https://player.vimeo.com/video/12345678 (preferred)

	https://vimeo.com/12345678

Example

	Request

	View

	{
 "type": "vimeo",
 "url": "player.vimeo.com/video/12345678"
}

	[image: ../_images/activity_vimeo_ex_01.png]

Video

Sources allowed to send: customer, agent and bot.

	Property

	Mandatory

	Description

	type

	Yes

	Must be video.

	url

	Yes

	
The video url, which can be in anyone of the following formats:

	.mp4 (preferred)

	.mov

	label

	No

	
The label of this audio. Think of the label as a title to be displayed.

Note: label is channel specific and may not render on certain channels.

	mimeType

	No

	The mime type of the video. Hubster will try it’s best to determine the mime type
based on the url.

Example

	Request

	View

	{
 "type": "video",
 "url": "http://site.com/myvideo.mp4"
}

	[image: ../_images/activity_video_ex_01.png]

Audio

Sources allowed to send: customer, agent and bot.

	Property

	Mandatory

	Description

	type

	Yes

	Must be audio.

	url

	Yes

	
The audio url, which can be in anyone of the following formats:

	.mp3 (preferred)

	.mp4

	.wav

	label

	No

	
The label of this audio. Think of the label as a title to be displayed.

Note: label is channel specific and may not render on certain channels.

	mimeType

	No

	The mime type of this audio. Hubster will try it’s best to determine the mime type
based on the url.

Example

	Request

	View

	{
 "type": "audio",
 "url": "http://site.com/myaudio.mp3"
}

	[image: ../_images/activity_audio_ex_01.png]

Image

Sources allowed to send: customer, agent and bot.

	Property

	Mandatory

	Description

	type

	Yes

	Must be image.

	url

	Yes

	The image url.

	urlAnchor

	No

	The url anchor. Used when user clicks on image.

	alt

	No

	The alternate text for this image.

	title

	No

	
The text to show on the image.

Note: title is channel specific and may not render on certain channels.

	channels

	No

	Channel specific applied properties. The example below shows how to render
the title on a Webchat channel.

Example

	Request

	View

	{
 "type": "image",
 "url": "http://site.com/myimage.png",
 "alt": "Some alternate text",
 "title": "Eva Green",
 "channels": [{
 "type": "Webchat",
 "metadata": [
 {
 "key": "caption-show",
 "value": "true"
 },
 {
 "key": "caption-color",
 "value": "white"
 }
]
 }]
}

	[image: ../_images/activity_image_ex_01.png]

Attachment

Sources allowed to send: customer, agent and bot.

	Property

	Mandatory

	Description

	type

	Yes

	Must be attachment.

	label

	Yes

	The label for this attachment.

	mimeType

	Yes

	The mime type for this attachment i.e pdf, etc.

	url

	Yes

	The attachment url.

Example

	Request

	View

	{
 "type": "attachment",
 "label": "Year end report",
 "mimeType": "pdf",
 "url": "http://site.com/myfile.pdf"
}

	[image: ../_images/activity_attachment_ex_01.png]

Location

Sources allowed to send: customer, agent and bot.

	Property

	Mandatory

	Description

	type

	Yes

	Must be location.

	Address

	See note

	A fully qualified address.

	latitude

	See note

	A latitude coordinate value. Note: The longitude coordinate value must be supplied.

	longitude

	See note

	A longitude coordinate value. Note: The latitude coordinate value must be supplied.

Example

	Request

	View

	{
 "type": "location",
 "address": "2640 Matheson, Mississauga, ON",
 "latitude": 43.8425254,
 "longitude": -79.5240196
}

	[image: ../_images/activity_location_ex_01.png]

Note

Either a fully qualified address or a set of latitude/longitude coordinates must be supplied.
If both address or latitude/longitude are supplied, Hubster will resort to using
the latitude/longitude coordinates as the preferred option.

Please note, when using latitude/longitude coordinates, Hubster will try to yield the appropriate address.
However, if the address yielded is not exact, then the latitude/longitude coordinates may be off.
Alternatively, you can always use the address property without the need to provide latitude/longitude coordinates.

Contact

Sources allowed to send: customer, agent and bot.

	Property

	Mandatory

	Description

	type

	Yes

	Must be contact.

	imageUrl

	No

	The image url to the contact.

	title

	Yes

	At minimum, the contact message requires a title. i.e. Person’s name, company name, job title, etc.

	subtitle

	No

	A subtitle for the contact. i.e. company name, job title, etc.

	properties

	No

	
A tuplet made out of key/value/type set that can used to provide more metadata for the contact. See example.

Note

The type portion of the tuplet is not required, however, if used, can provide additional
metadata for certain property types. For example, if Hubster detects that a
recipient device supports vcards, such as an SMS device, Hubster will create a
contact element, allowing the recipient of the message to store the contact to their device’s contact list.

Hubster supports the following vcard types and their counterpart:

	address; work, home

	phone; work, home, cell

	email

	channels

	No

	Channel specific applied properties. The example below shows how to render
the title on a Webchat channel.

Example

	Request

	View

	{
 "type": "contact",
 "imageUrl": "https://site.com/eva.png",
 "title": "Eva Green",
 "subtitle": "Mighty Health",
 "properties": [
 {
 "key": "Title",
 "value": "Health Advisor/Coach"
 },
 {
 "key": "Address",
 "value": "123 Main Street, Maple, ON",
 "type": "address;work"
 },
 {
 "key": "Cell",
 "value": "(416) 555-0001",
 "type": "phone;cell"
 },
 {
 "key": "Email",
 "value": "eva@mightyhealth.com",
 "type": "email"
 }
],
 "channels": [
 {
 "type": "Webchat",
 "metadata": [
 {
 "key": "caption-show",
 "value": "true"
 },
 {
 "key": "caption-color",
 "value": "white"
 }
]
 }
]
}

	[image: ../_images/activity_contact_ex_01.png]

Card

Sources allowed to send: customer, agent and bot.

	Property

	Mandatory

	Description

	type

	Yes

	Must be card.

	urlType

	No

	
If url is supplied, then this property is required.

The possible types are as follows:

	image

	youtube

	vimeo

	video

	audio

	url

	No

	
The link to the resource to display. The urlType property must be provided.

The possible types are as follows:

	image

	youtube

	vimeo

	video

	audio

	fallbackImageUrl

	No

	When supplying a url that supports an image placeholder, such as youtube for example,
and the link doesn’t support an image, Hubster will use the fallbackImageUrl link as an alternate.

	title

	No

	A title to display.

	subtitle

	No

	A subtitle to display.

	content

	No

	The content to display.

	channels

	No

	Channel specific applied properties. The example below shows how to render
the title on a Webchat channel. Note: only applicable if urlType=image

Example

	Request

	View

	{
 "type": "card",
 "urlType": "image",
 "imageUrl": "https://site.com/car.png",
 "title": "Victorious",
 "subtitle": "European style",
 "content": "Lorem Ipsum is simply..."
 "channels": [
 {
 "type": "Webchat",
 "metadata": [
 {
 "key": "caption-show",
 "value": "true"
 },
 {
 "key": "caption-color",
 "value": "white"
 }
]
 }
]
}

	[image: ../_images/activity_card_ex_01.png]

	{
 "type": "card",
 "urlType": "youtube",
 "imageUrl": "https://youtube.com/embed/abc",
 "title": "Cosmic Journeys",
 "subtitle": "Space Odyssey",
 "content": "Lorem Ipsum is simply..."
}

	[image: ../_images/activity_card_ex_02.png]

Carousel

Sources allowed to send: agent and bot.

	Property

	Mandatory

	Description

	type

	Yes

	Must be carousel.

	items

	Yes

	
Must contain one or more of the following message types:

	image

	youtube

	vimeo

	video

	audio

	channels

	No

	Channel specific applied properties. The example below shows how to render
the title on a Webchat channel. Note: only applicable to image items.

Example

	Request

	View

	{
 "type": "carousel",
 "items": [
 {
 "title": "Victorious",
 "content": "Lorem Ipsum is...",
 "urlType": "image",
 "url": "http://site.com/image1.png",
 "actions": [
 {
 "type": "reply",
 "title": "Select",
 "payload": "Victorious"
 },
 {
 "type": "link",
 "title": "More Info",
 "url": "https://hubster.io"
 }
]
 },
 {
 "title": "Green Dragon",
 "content": "Lorem Ipsum is...",
 "urlType": "image",
 "url": "http://site.com/image2.png",
 "actions": [
 {
 "type": "reply",
 "title": "Select",
 "payload": "Green Dragon"
 },
 {
 "type": "link",
 "title": "More Info",
 "url": "https://hubster.io"
 }
]
 },
 {
 "title": "Panther",
 "content": "Lorem Ipsum is...",
 "urlType": "image",
 "url": "http://site.com/image3.png",
 "actions": [
 {
 "type": "reply",
 "title": "Select",
 "payload": "Black Panther"
 },
 {
 "type": "link",
 "title": "More Info",
 "url": "https://hubster.io"
 }
]
 }
],
 "channels": [
 {
 "type": "Webchat",
 "metadata": [
 {
 "key": "caption-show",
 "value": "true"
 },
 {
 "key": "caption-color",
 "value": "white"
 }
]
 }
]
}

	[image: ../_images/activity_carousel_ex_01.png]

	{
 "type": "carousel",
 "items": [
 {
 "title": "Cosmic Journeys",
 "content": "Lorem Ipsum is...",
 "urlType": "youtube",
 "url": "youtube.com/embed/1234",
 "actions": [
 {
 "type": "reply",
 "title": "Select",
 "payload": "Cosmic Journeys"
 },
 {
 "type": "link",
 "title": "Watch",
 "url": "youtube.com/embed/1234"
 }
]
 },
 {
 "title": "Space",
 "content": "Lorem Ipsum is...",
 "urlType": "vimeo",
 "url": "player.vimeo.com/video/1234",
 "actions": [
 {
 "type": "reply",
 "title": "Select",
 "payload": "Space"
 },
 {
 "type": "link",
 "title": "Watch",
 "url": "player.vimeo.com/video/1234"
 }
]
 },
 {
 "title": "Elephants",
 "content": "Lorem Ipsum is...",
 "urlType": "video",
 "url": "http://site.com/v1.mp4",
 "actions": [
 {
 "type": "reply",
 "title": "Select",
 "payload": "Elephants"
 },
 {
 "type": "link",
 "title": "Watch",
 "url": "https//site.com/v1.mp4"
 }
]
 }
]
}

	[image: ../_images/activity_carousel_ex_02.png]

Note

Certain devices do not support carousels. If a device is unable to display a carousel,
Hubster will render the carousel as a list.

List

Sources allowed to send: agent and bot.

Note

Lists are similar to Carousels. The only differences are:
how it’s displayed and that a list provides the ability to offer a global
set of actions for the message type.

	Property

	Mandatory

	Description

	type

	Yes

	Must be list.

	items

	Yes

	
Must contain one or more of the following message types:

	image

	youtube

	vimeo

	video

	audio

	actions

	No

	
A list of actions containing zero or more of the following action types:

	postback

	reply

	link

	channels

	No

	Channel specific applied properties. The example below shows how to render
the title on a Webchat channel. Note: only applicable to image items.

Example

	Request

	View

	{
 "type": "list",
 "items": [
 {
 "title": "Alien",
 "content": "Lorem Ipsum is...",
 "urlType": "image",
 "url": "http://site.com/image1.png",
 "actions": [
 {
 "type": "reply",
 "title": "Select",
 "payload": "Alien"
 },
 {
 "type": "link",
 "title": "More Info",
 "url": "https://hubster.io"
 }
]
 },
 {
 "title": "Red Baron",
 "content": "Lorem Ipsum is...",
 "urlType": "image",
 "url": "http://site.com/image2.png",
 "actions": [
 {
 "type": "reply",
 "title": "Select",
 "payload": "Red Baron"
 },
 {
 "type": "link",
 "title": "More Info",
 "url": "https://hubster.io"
 }
]
 }
],
 "actions": [
 {
 "type": "postback",
 "title": "See more options",
 "payload": "More Options"
 },
 {
 "type": "link",
 "title": "Check our catalog",
 "url": "https://hubster.io"
 }
],
 "channels": [
 {
 "type": "Webchat",
 "metadata": [
 {
 "key": "caption-show",
 "value": "true"
 },
 {
 "key": "caption-color",
 "value": "white"
 }
]
 }
]
}

	[image: ../_images/activity_list_ex_01.png]

Note

Certain devices do not support lists. If a device is unable to display a list,
Hubster will render the list as a carousel.

Commands

Sources allowed to send: agent and bot.

Commands are no different then sending a simple one line text message type.
The main difference is when issuing a command it must start with a double (colon) ::
to be recognized. For example when sending this text, ::some_command -arg1 -arg2, …
Hubster will treat this as a command to be processed.

See examples below:

	Request

	{
 "type": "text",
 "text": "::resp -n contact.eva.green"
}

	{
 "type": "text",
 "text": "::trans -force -n shopify"
}

Event Types

Event types are similar to message types and but are simpler in nature.

Basics

Note

Apart from the payload event type, the other types are currently not supported
and will be on a future Hubster road-map.

{
 "type": "seen | typing_on | typing_off | payload"
}

	Property

	Mandatory

	Description

	type

	Yes

	
Can be any one of the following types:

	seen - mark the message as been seen

	typing_on - force the device to show the typing gif

	typing_off - force the device to turn off the typing gif

	payload - the event contains a payload - see payload description below

Payload

	Property

	Mandatory

	Description

	type

	Yes

	Must be payload

	payloadType

	Yes

	A unique identifier that describes the payload type.

	payload

	Yes

	Can be any json object.

Example

{
 "type": "payload",
 "payloadType": "my.payload.01",
 "payload": {
 "data1": "value1",
 "data2": "value2",
 "data3": "value3"
 }
}

Types

Activity Types

	Type

	Description

	Message

	The activity contains an message node.

	Event

	The activity contains an event node.

Channel Types

	Type

	Source

	Value

	Description

	Direct

	General

	1

	Direct channel.

	Bot

	Business

	2

	Bot channel.

	System

	Business

	3

	System type. This type is mainly used for Webhooks.

	Messenger

	Customer

	101

	Facebook Messenger channel.

	TwilioSMS

	Customer

	102

	Twilio SMS channel.

	Line

	Customer

	103

	Line channel.

	Telegram

	Customer

	104

	Telegram channel.

	Kik

	Customer

	105

	Kik channel.

	WebChat

	Customer

	106

	WebChat channel.

	Slack

	Business

	1001

	Slack channel.

Integration Types

	Type

	Description

	Customer

	Integration type for Customers.

	Agent

	Integration type for Agents.

	Bot

	Integration type for Bots.

	System

	Integration type for Webhooks.

Error Codes

Below are a list of all possible REST API error codes for all Hubster API related services.

Identity

Below is a full list of all possible Hubster Identity REST API error codes.

	Error

	HTTP Status

	Description

	IDT000100

	500

	System Error.

Portal

Below is a full list of all possible Hubster Portal REST API error codes.

	Error

	HTTP Status

	Description

	PRT000100

	500

	System Error.

	PRT000101

	403

	Forbidden.

	PRT000102

	401

	Unauthorized access.

	PRT000103

	501

	Requested operation is not implemented.

	PRT000104

	410

	Requested resource or operation is not available.

	PRT000105

	404

	Requested resource was not found.

	PRT000106

	409

	Resource you are trying to create already exists.

	PRT000107

	417

	Current request or operation is not valid.

	PRT000108

	408

	Request took too long to execute and timed out.

	PRT000109

	417

	Requested action was aborted.

	PRT000110

	403

	Requested action is not allowed.

	PRT000200

	400

	Required query parameter was not supplied.

	PRT000201

	400

	One or more parameters have invalid format.

	PRT000202

	400

	Please correct supplied format for used parameter(s).

	PRT000203

	400

	Provided GUID has bad format.

	PRT000204

	400

	Provided date has bad format.

	PRT000205

	400

	One or more parameters have invalid date format.

	PRT000206

	400

	Provided parameter value is not supported (out of range).

	PRT000207

	400

	Provided parameter is out of predefined range.

	PRT000208

	400

	Provided parameter has to be greater than zero.

	PRT000209

	400

	Parameter must be greater than or equal to zero.

	PRT000210

	400

	Invalid Number format provided.

	PRT000211

	400

	Invalid email format provided.

	PRT000212

	400

	Criteria parameter is required when supplying a searchBy parameter.

	PRT000300

	400

	Root body section is missing.

	PRT000301

	400

	Required property is missing.

	PRT000302

	400

	Property has is invalid type.

	PRT000303

	400

	Validation failed. Property not supported.

	PRT000304

	400

	Request parameter has bad format. Expected to be a valid decimal value.

	PRT000305

	400

	Request parameter has bad format. Expected to be a valid GUID value.

	PRT000306

	400

	Request collection must contain one or more elements.

	PRT000307

	400

	Messaged was empty.

	PRT000308

	400

	Request body must contain Location, either an address and/or latitude/longitude coordinates.

	PRT000400

	400

	Tenant already exists.

	PRT000401

	400

	User already exists.

	PRT000599

	404

	User not found.

	PRT000600

	400

	Name already exists.

	PRT000699

	404

	Hub not found.

	PRT000700

	400

	An integration with name already exists.

	PRT000701

	400

	An integration with same name has already been assign to a hub. You can only add this channel once across all hubs.

	PRT000799

	404

	Integration not found.

Engine

Below is a full list of all possible Hubster Engine REST API error codes.

	Error

	HTTP Status

	Description

	ENG000100

	500

	System Error.

	ENG000101

	403

	Forbidden.

	ENG000102

	401

	Unauthorized access.

	ENG000103

	501

	Requested operation is not implemented.

	ENG000104

	410

	Requested resource or operation is not available.

	ENG000105

	404

	Requested resource was not found.

	ENG000106

	409

	Resource you are trying to create already exists.

	ENG000107

	417

	Current request or operation is not valid.

	ENG000108

	408

	Request took too long to execute and timed out.

	ENG000109

	417

	Requested action was aborted.

	ENG000110

	403

	Requested action is not allowed.

	ENG000200

	400

	Required query parameter was not supplied.

	ENG000201

	400

	One or more parameters have invalid format.

	ENG000202

	400

	Please correct supplied format for used parameter(s).

	ENG000203

	400

	Provided GUID has bad format.

	ENG000204

	400

	Provided date has bad format.

	ENG000205

	400

	One or more parameters have invalid date format.

	ENG000206

	400

	Provided parameter value is not supported (out of range).

	ENG000207

	400

	Provided parameter is out of predefined range.

	ENG000208

	400

	Provided parameter has to be greater than zero.

	ENG000209

	400

	Parameter must be greater than or equal to zero.

	ENG000210

	400

	Invalid Number format provided.

	ENG000211

	400

	Invalid email format provided.

	ENG000212

	400

	Criteria parameter is required when supplying a searchBy parameter.

	ENG002000

	400

	Provided tenant is invalid.

	ENG002001

	400

	Your account is disabled.

	ENG002002

	400

	Account evaluation period has expired.

	ENG003000

	400

	Conversation request requires body to be present.

	ENG003001

	400

	Conversation request is missing required property.

	ENG003002

	400

	Conversation request parameter has bad format. Expected to be a valid GUID value.

	ENG005000

	400

	Direct Inbound request requires body to be present.

	ENG005001

	400

	Direct Inbound request is missing required property.

	ENG005002

	400

	Direct Inbound request does not support provided property.

	ENG005003

	400

	Direct Inbound request must contain one of the following sections: root.message or root.event.

	ENG005004

	400

	Direct Inbound request can only contain one root with the following sections: root.message or root.event.

	ENG005015

	400

	Direct Inbound request collection must contain one or more elements.

	ENG005020

	400

	Direct Inbound request parameter has bad format. Expected to be a valid GUID value.

	ENG005021

	400

	Direct Inbound request parameter has bad format. Expected to be a valid decimal value.

	ENG005023

	400

	Direct Inbound request body was empty.

	ENG005024

	400

	Direct Inbound request body must contain Location, either an address and/or latitude/longitude coordinates.

	ENG005500

	404

	Hub does not exist.

	ENG005501

	400

	Provided Hub does not have any Agent or Bot integration configured to receive or interact with customer messages.

	ENG006000

	404

	Provided integration does not exist.

	ENG006500

	404

	Provided conversation does not exist.

	ENG006501

	400

	Customer is no longer responding to messages.

	ENG006502

	400

	Your Hubster integration has been terminated and is no longer active. Please contact your Administrator.

	ENG006503

	400

	Conversation was paused.

	ENG007500

	400

	Conversation encountered a web related issue.

	ENG007501

	400

	Conversation encountered a web security related issue.

	ENG007502

	400

	Conversation encountered a runtime related issue.

	ENG007510

	400

	Customer failed to receive your message. This was due to an unauthorized issue on their end. Please check with your Administrator.

	ENG007511

	400

	A web related issue was detected on Hub.

	ENG007512

	400

	An unreachable web-endpoint was detected on Hub.

	ENG008000

	400

	Message Spark encountered a web related issue.

	ENG008001

	400

	Message Spark encountered a web security related issue.

	ENG008002

	400

	Message Spark encountered a runtime related issue.

	ENG008500

	400

	No upload files were provided.

	ENG008501

	400

	Invalid URL was provided.

	ENG008502

	400

	File you submitted was not received by the other party.

	ENG008503

	400

	The other party tried to send you a file but failed.

	ENG009000

	400

	Invalid command. You must have an actually command in front of the double colon e.g. ::mycommand [args]...

	ENG009001

	400

	Unknown command.

	ENG009200

	400

	Command was not found. Please type ::{1} --list to see the full list of available commands.

	ENG009201

	400

	No commands have been configured for this hub.

	ENG009202

	400

	No commands were found for the category.

	ENG009299

	400

	There was an error while executing command. Please contact technical support.

Events

Below is a full list of all possible Hubster Events REST API error codes.

	Error

	HTTP Status

	Description

	EVT000100

	500

	System Error.

Index

 _images/activity_text_ex_01.png
Hello there, how can | help you?

_images/activity_text_ex_02.png
my contactinfo

Mighty Healt

_images/activity_list_ex_01.png
Please type here.

_images/activity_location_ex_01.png
) Welcome to Hubster

2540 Matheson Bivd E, Mississauga, ON AW, Canada

_images/activity_vimeo_ex_01.png

_images/activity_youtube_ex_01.png
~ ‘Cosmic Journeys - Hubble} niv.

_images/activity_text_ex_03.png
‘Select one of the following options

_images/activity_video_ex_01.png
> ou3r1083

_images/arch_full.png
Multichannel Rendering
UX Response Framework

Language
Translations

Sentiment
Analysis

Open Hours

Webhooks

Custom Plugins
(BYOP)

Commands

Keyword Spotting
Leads

_images/blue_sample_chat.png
® My Company Title

> 000/054 ©

Please type here B

_images/activity_carousel_ex_02.png
~| Cosmic Journeys

Cosmic Journeys

_images/activity_contact_ex_01.png

_images/activity_card_ex_02.png
%=~ Cosmic Journeys* Hlbbl
- A Ee
e >

Cosmic Journeys
Space Oayazey

Lorem fpsum = sy dummy text o th prining and
ypeseting indusry. Lorem Ipsum has been he ncustys

_images/activity_carousel_ex_01.png
Lorem

_images/activity_image_ex_01.png
Eva Green

_images/default_chat.png
> 0:00/0:54)

Please type here >

nav.xhtml

 Table of Contents

 		
 Welcome to Hubster’s Documentation Portal

_images/activity_audio_ex_01.png
Welcome to Hubster

> 0007054

©

_images/link_buttons.png

_images/activity_card_ex_01.png
Victorious

European style

o the prining and
ting indusiny. Lorem psum nss

_images/list_buttons.png
Lorem Ipsum is simply dummy text of the printing
um has been the industry's
since the 15005,

_images/hub.png
Customer Channels

80
YL 4
250

s O
3
0@

@O0

@ & () Configuration & Opions Webhooks

Language Transiaton &S

D S
BOO e
Bot Integrations * Lead Scoring.

Ew o e

CRM Integrations

[VER~E2
“EEe

Business/Agent Channels

_images/activity_attachment_ex_01.png

_images/identity_api_resource_interactions.png
Business
Portal client id/secret

Business
Engine client d/secret

Business
Engine client d/secret

_images/postback_buttons.png

_images/quick_reply_buttons.png

_images/list_item_buttons.png
Ipsum s simply dummy text of the printing
tting industry. Lorem Ipsum
tandard dummy text ever i

Select

More Info

_images/logo.png

_images/transformation.png
I Customer sources I

Transform channel Transform Activity to
format to Activity. channel format

Conversation Pipeline

Transform Activity to Transform channel
channel format format to Activity.

1 Business sources I

%0% O
=@ee o6

G

-

ay,
[

N

_static/ajax-loader.gif

_static/comment.png

_static/down-pressed.png

_static/comment-bright.png

_static/comment-close.png

_static/file.png

_static/minus.png

_static/down.png

_static/up-pressed.png

_static/plus.png

_static/up.png

